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Abstract: Reservoir simulation is an indispensable tool for many computational applications such as 

uncertainty quantification, production optimization and history matching. However, these applications can 

become computational intractable because the simulation of even a single model is time consuming. To relieve 

the computational burden, a model order reduction (MOR) procedure referred to as POD-ITPWL is presented. 

In this procedure, trajectory piecewise linear (TPWL) is improved from linearization point selection and the 

weight function, and then combined with the POD method. We apply this MOR to a fully implicit oil–water 

subsurface flow problem. The result demonstrates that the method provides higher accuracy than existing 

POD-TPWL method, and the speed of POD-ITPWL model is almost the same as POD-TPWL. It provides 

runtime speedup of about 5 for the full-order model considered in this work. 
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I. INTRODUCTION 
Reservoir simulation is an essential tool for reservoir management such as uncertainty quantification 

and reservoir design optimization. These applications usually require many simulations. It can pose 

computational challenges to apply in practice when a large number of models are used. Therefore, how to 

relieve the computational burden is an urgent problem we need to solve. 

Model order reduction (MOR) techniques have shown promise in alleviating computational demands 

with minimal loss of accuracy. The main goal of MOR method is to generate a reduced-order model of the 

system, while preserving accurately the input/output behavior of the original system. Consequently, many 

strategies are based on the concept of projecting the states of the original system onto a suitably selected 

reduced-order state space to reduce the computational complexity. Trajectory piecewise linearization (TPWL) is 

a very popular MOR method for nonlinear system, which was originally developed by Rewienski and White [1]. 

The TPWL method approximates the nonlinear term by a piecewise-linear function obtained by linearizing the 

system at selected points along its trajectory. It has been applied in several areas, including modeling electronic 

circuits [2-3], biomedical micro-electromechanical [4], and computational fluid dynamics [5]. TPWL combined 

with proper orthogonal decomposition (POD) has recently suggested for nonlinear reservoir simulation [6-9]. In 

POD-TPWL, at each time step, the nonlinear term is linearized around a particular training run solution by the 

use of the training-run Jacobian and other matrices. The POD basis matrix, which is constructed using the 

solution states (snapshots) of the training runs output, projects the linearized system to a low-dimensional space. 

MOR based on POD-TPWL has been shown to provide runtime speedups of O(10
2
–10

3
) [6,7,10]. These large 

speedups result from the fact that the online computations entail only the linear solution of low-order systems, in 

contrast to the full-order nonlinear solution required for the high-fidelity simulation. 

Although the TPWL MOR method in [1] is more efficient for nonlinear systems, it still has some 

drawbacks. Sometimes, the error is large when the current state is away from most of the expansion points 

[1,6,11-13]. In this work we improve the TPWL method from two aspects: linearization point selection and the 

weight function which play key role in TPWL, and then combined with the POD method. The method is 

referred to as POD-ITPWL. We apply this MOR to oil–water subsurface flow problem to improve the speed and 

precision of reservoir simulation. 

This paper proceeds as follows. In Section 2, we present the fully implicit oil-water subsurface flow 

governing equations. In Section 3, POD-ITPWL reduced-order modeling is presented. We first provide a 

detailed description of improved trajectory piecewise linearization (ITPWL), and then generation process of 

POD basis matrix is described. Then, the derived POD-ITPWL reduced-order modeling is tested in comparison 

with the exiting POD-TPWL through a two-dimensional oil-water two phase anisotropic reservoir model. 

Finally, we present conclusion and future work. 
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II. GOVERNING EQUATIONS 
In this section, we mainly introduce the governing equations for a two-phase (oil–water) system. For a 

two-phase isothermal immiscible oil–water system, the governing equations are obtained by combining 

conservation of mass with Darcy’s law for each phase [14]: 
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Where subscripts w  and o  are used to identify water and oil, S  is the saturation,  is phase density,   

is porosity, q  is a source term expressed as flow rate per unit volume, t  is time,   is a geometric factor, 

v  is the Darcy velocity vector,   is the divergence operator, rwk and rok  are the relative permeabilities, 

  is the fluid viscosity, K


 is the permeability tensor, g  is the acceleration of gravity and d  is depth, 

p  is pressure,   is the gradient operator. 

Equations (1) and (2) together contain four unknowns, op , wp , oS  and wS , two of which can be 

eliminated with aid of the relationships 

1 wo SS                          （5） 

)( wcwo Sppp                        （6） 

Where )( wc Sp  is the oil-water capillary pressure. 

We consider the relatively simple cases and neglect gravitational and capillary pressure effects. Format to 

discrete in space by using five point block centered finite difference, we may have the nonlinear first-order 

differential equation (7), see the specific derivation of literature [9]: 
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Where vector p and s  is grid center oil pressure op and water saturation wS  respectively; p and s  is the 

time t  derivative of vector p and s  respectively; V is the cumulative matrix; T is transmission matrix; F is 

divided flow matrix; Vector ,well tq  is the total flow of oil-water well. 

In practice, the source terms are often not the flow rates in the wells but rather the pressures. This can be 

accounted for by rewriting equation (7) in partitioned form as 
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Here, the elements of vector 1p  are the pressures in those grid blocks that are not penetrated by a well. The 

elements of 2p  are the pressures in the blocks where the source terms are prescribed total well flow rates 

well,t
q


, and those of 3p  are the pressures in the blocks where the source terms are obtained through 

prescription of the bottom hole pressures (BHPs) wellp


 with the aid of a diagonal matrix of well indices 3J . 

To compute the oil and water flow rates in the wells with prescribed pressures we use the well model 
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To compute the BHPs wellp  in the wells with prescribed total flow rates we need an additional diagonal matrix 

J2 of well indices such that 
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From which we obtain 
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To bring these equations in state-space form we define the state vector x, input vector u and output vector y 

as 
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（12,13,14）     

Equations (8), (9) and (11) can then be rewritten in nonlinear state-space form 

             x f(x,u) A(x)x +B(x)u                        （15）           

y = h(x,u) = C(x)x+D(x)u                       （16） 

where the matrices are defined as 
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It should be noted that the parameters of the system matrix A  and the input matrix B  are still functions 

of the state x . Vector y  is called the output vector. C  is the output matrix. D  is the direct transfer matrix. 

Because the elements of the matrix V ，T ，F， J  are function of the state variables x , the system is a 

nonlinear system. 

 

III. POD-ITPWL REDUCED-ORDER MODELING FOR SUBSURFACE FLOW 
In this section, POD-ITPWL reduced-order modeling is presented. We first provide a detailed 

description of improved trajectory piecewise linearization (ITPWL), and then generation process of POD basis 

matrix is described. 

 

3.1 Improved Trajectory Piecewise Linearization Method 

In order to reduce the computational effort associate with full-order solution of Eq. (15), we now 

introduce the improved trajectory piecewise linearization (ITPWL) method. In TPWL [1] methodology a 

nonlinear system is represented as a weighted combination of piecewise linear systems and each linear system is 

projected into a low-dimensional space using an appropriate projection method. 

For reservoir simulation nonlinear system (15), we first simulate one or more full-order “training” runs 

using a specified set for each well. We save the states and the derivative information at each time step of one or 

more of the training runs. We obtain a set of expansion points 0 1 1
ˆ ˆ ˆ, , , sx x x  by using a suitable 

linearization point selection method, and then linearize the nonlinear term f(x) A(x)x  at various expansion 

points: 

   ˆ ˆ( )i i i i i  x G x + f(x ) G x B u ， 0,1, , (s 1)i              （17） 

Where iG is Jacobian matrix of f(x)  at ˆ
ix , ˆ

i iB B(x ) . 

The nonlinear system (15) is approximated by constructing a weighted combination of linearized models 

(17):  
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where ( )i x  are state-dependent weights. (All the weights are nonnegative, and satisfy 

1

0

( ) 1
s

i

i






 x , for 

all x ). 

The vectors and matrices in Eq. (18) are still ( )k

cO N ( cN  is the total number of grid blocks), with 1,2k  , 

respectively. To reduce the size of the system, we apply dimension reduction. Assuming we have already 

generated l-th order bases cN l

l


Φ  , and then perform a change of variables lx Φ z , where 

lz   is a 

low-dimensional variable. Reduction is achieved because cl N . Projecting (18) yields: 
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T
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T
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In fact, since computing ( )i l Φ z  is inexpensive, instead of weights ( )i l Φ z , we may use weighting 

functions ( )i z  which depend on the reduced order state vector. Replacing ( )i l Φ z  with ( )i z  in (19) 

yields the following reduced order model: 
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where l lC CΦ . 

TPWL shows some problems during simulation. The error is large when the current state is away from 

most of the expansion points. We will improve the TPWL method from two aspects: linearization point 

selection and the weight function which play key role in TPWL.  

In order to obtain high quality linear expansion, we use a new linearization point selection method 

based on a global maximum error controller for TPWL model order reduction [3]. This method is based on a 

simple fact that the simulation cost of the TPWL model is very low, and selects the state at which the responses 

of the current TPWL model and the full nonlinear model have the maximum difference as a new linearization 

point. It can generate the TPWL model of smaller size and higher accuracy. In reservoir simulation, the specific 

process of the algorithm is described as: 

1) Give the maximum error control limit and input vector (t)u ; 

2) Simulate the full-order reservoir simulator and save the output state vectors 0 1{ , , , }Mx x x ; 

3) The initial state 0x is taken as the first linear expansion point 0x̂ , and set 1i  ; 

4) Use the TPWL method to establish a temporary model: 
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5) The model (21) is simulated and the state vector 0 1{ , , , }M
  x x x is obtained; 

6) 0 1{ , , , }M
  x x x and 0 1{ , , , }Mx x x will be compared to find the maximum  

error state k
x , and then record the maximum error max and k ; 

7) If max  , select the first 1i   linearization point 1
ˆ

i k x x , and set 1i i  , then turn to 4);  

If max  , the loop ends and the linearization point 0 1 1
ˆ ˆ ˆ{ , , , }ix x x is returned. 

By experiments, we use the following weight function that is more effective [2]: 
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Where 
2

2
ˆ( )i id  z z z ， min min( ( ))id d z ， 0,1, , (s 1)i   . minD  is the minimum distance among 

those center points 0 1 1
ˆ ˆ ˆ{ , , , }sx x x . Parameter p is between 1 and 2. The whole weight function is finally 

normalized to satisfy

1
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3.2 Proper Orthogonal Decomposition (POD) Method 

In this work, we construct the lΦ  matrix through application of POD. First, training simulations of the 

full-order model is performed, and then solution snapshots are saved. As discussed in [15-16], we separately 

treat the pressure and water saturation snapshots, and construct basis matrices for each. The snapshots are 

assembled into data matrices cN m

p


X   and cN m

S


X  : 
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1 2 m

p p p p
   X x x x ，     

1 2 m

S S S S
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Where m  denotes the total number of time steps in all of training simulations. 

After the snapshots are obtained, the mean of the snapshots is computed: 
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The data matrices ˆ
pX  and ˆ

SX  are determined by subtracting the mean from each snapshot: 
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We then perform singular value decomposition (SVD) on ˆ
pX  and ˆ

SX , and preserve the first pl  and sl  

left singular vectors. The values of pl  and sl  are determined based on the energy criterion. The resulting two 

basis matrices are created, lpΦ and lsΦ for the oil pressure and water saturation states, respectively. We then 

assemble into the global basis matrix lΦ , where p sl l l  . The lΦ  will project Eq. (18) into a 

low-dimensional space.   

 

IV. NUMERICAL RESULTS 
In this section, we present numerical results for POD-TPWL and POD-ITPWL for a two-dimensional 

oil-water two phase anisotropic reservoir model. It contains 21 21  grid blocks, and the permeability field 

and porosity field is shown in Fig. 1, 2. The physical dimension of each grid-block is 33 33 2  m. The 

viscosity 
o

  of the crude oil is 5mPa·s, and formation water viscosity w is 1mPa·s. The comprehensive 

compression coefficient tc  is 3.0×10
-3

MPa
-1

. Original formation pressure ip  is 30MPa. Borehole radius 

wellr is 0.114m. The end point relative permeability of oil phase 
0

rok  is 0.9，and the end point relative 

permeability of water phase 
0

rwk  is 0.6. Oil phase Corey index on  is 2.0, and water phase Corey index wn  is 

2.0. Residual oil saturation orS is 0.2, and irreducible water saturation wcS  is 0.2. There are a injection well and 

four production wells in a five-spot pattern. Capillary pressure and gravity effects are neglected.  

 

              
 

Fig.1 Permeability field                      Fig.2 Porosity field 

 

The first step in the POD-TPWL and POD-ITPWL procedures is to perform training runs using the 

full-order model to generate the states and Jacobian matrices. For this reservoir model a training simulation is 

performed. In this simulation the injection well is prescribed to water injection rate of 86.4m
3
/d. This condition 

will be maintained in subsequent test runs (our focus here is on varying the production well BHPs). For the 

production wells, the BHPs are prescribed as 26MPa.                   

In the training runs, we simulate reservoir performance for a total of 1200 days with a maximum time 

step of 20 days. From the training runs 62 pressure and saturation snapshots and Jacobian matrices are recorded. 

The POD basis matrix is constructed following the approach described in section 3.2. The reduced basis lΦ  
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contains a total of 46 columns, 22 of which correspond to pressure states and 24 to saturation states. For 

POD-TPWL method, we obtain 10 linearization points, and for the POD-ITPWL method we obtain 14 

linearization points. 

We next consider two different test cases to evaluate the predictive capability of POD-TPWL and 

POD-ITPWL reduced order model（ROM）. In a test case, the BHP schedules differ from those used in the 

training run. 

(1) Prediction Using ROM-Test I 

We change the BHP of the four production wells, and they are set to 23MPa. The  

difference is little compared to the bottom-hole pressure of training simulation. The injection well water 

injection rate is the same as in the training simulation.  

Results are shown for oil production rates in four wells (Figs.3-6) and water production rates in well P2 and 

P3 (Figs.7 and 8). We focus on well P2 and P3 for water production rates since the water production rates of 

well P1 and P4 are close zero. In those figures, the black curves denote full-order model solution. The blue and 

red curves depict the POD-TPWL and POD-ITPWL solutions, respectively.  
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Fig.3 Oil production rate P1 (Test I) 
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Fig.4 Oil production rate P2 (Test I) 
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Fig.5 Oil production rate P3 (Test I) 
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Fig.6 Oil production rate P4 (Test I) 
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Fig.7 Water production rate P2 (Test I) 
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Fig.8 Water production rate P3 (Test I) 

 

In order to assess the quality of the reduced-order models, we now define error which is expressed as 

percentage. The time-average error oE in oil production rate and the time-average error wE in water production 

rate are gived as: 

,w ,w
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



           （24） 

Here 
,wFOM

j

oq  and 
,wROM

j

oq are the oil or water production rate for well j  by the full-order and 

reduced-order (POD-TPWL or POD-ITPWL) model, respectively. T  is the total simulation time, 
wpn is the 

number of production wells. Median errors for the results of POD-TPWL and POD-ITPWL model are presented 

in Table1. 

 

 

Table 1 Median errors in POD-TPWL and POD-ITPWL results (Test I) 
                      POD-TPWL error      POD-ITPWL error 

Oil production rate         6.2%                  2.1% 
Water production rate        7.1%                  2.4% 

 

From these figures and table, we see that both ROMs are able to provide useful results when the 

test-case BHPs are close to those used in training, however, the POD-ITPWL solution is more accurate than 

POD-TPWL. 

The simulation times for the full-order reservoir simulation, the POD-TPWL, and the POD-ITPWL 

model are shown in Table 2. The POD-ITPWL model reduces the simulation time by about a factor of five. 

 

Table 2 Comparison of simulation time (Test I) 
           full-order        POD-TPWL         POD-ITPWL  

Time      94.27s           17.18s               18.82s 

 

(2) Prediction Using ROM-Test II 

For the test II , four production well BHPs are set to 20MPa. The difference is larger compared with the bottom 

hole pressure of training simulation. The specification for the injection well is the same as in the previous case.  

Results are shown for oil production rates in four wells (Figs.9-12) and water production rates in well P2 and P3 

(Figs.13 and 14). We focus on well P2 and P3 for water production rates since the water production rates of well 

P1 and P4 are also close zero. In those figures, the black curves denote full-order model solution. The blue and 

red curves depict the POD-TPWL and POD-ITPWL solutions, respectively.  
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Fig.9 Oil production rate P1 (Test II) 
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Fig.10 Oil production rate P2 (Test II) 
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Fig.11 Oil production rate P3 (Test II) 
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Fig.12 Oil production rate P4 (Test II) 
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Fig.13 Water production rate P2 (Test II) 
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Fig.14 Water production rate P3 (Test II) 

 

Median errors for the results of POD-TPWL and POD-ITPWL model are presented in Table3. 

Table 3 Median errors in POD-TPWL and POD-ITPWL results (Test II) 
                      POD-TPWL error      POD-ITPWL error 

Oil production rate         15.2%                 3.0% 
Water production rate        16.6%                 2.6% 

 

From these figures and table, the results demonstrate that when the difference of production well BHPs 

is larger compared to the bottom hole pressure of training simulation, the accuracy of POD-TPWL model 

degrades, however, POD-ITPWL model still leads to solutions in relatively close agreement with the full-order 
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model. 

For test II, the simulation times are given in table 4. The ROM with POD-ITPWL is also able to 

approximately reduce the simulation time by 5 times compared to time for the full-order reservoir model. 

 

Table 4 Comparison of simulation time (schedule 2) 
           full-order        POD-TPWL       POD-I TPWL  

Time       96.21s            18.62s            19.34s 

 

The offline preprocessing cost for ROMs can be relatively high. However, in applications such as 

optimization that require very large numbers (e.g., thousands) of simulations, this overhead is small relative to 

the cost of using full-order for all simulation. In such cases, the use of ROMs can provide significant reduction 

in computational cost. 

 

V. CONCLUSION 
In this work we introduce an improved MOR called POD-ITPWL. This MOR improves TPWL method 

from linearization point selection and the weight function, and then combined with the POD method. The 

method thus provides higher accuracy than existing POD-TPWL method. The speed of POD-ITPWL model is 

almost the same as POD-TPWL model. It provides runtime speedup of about 5 for the quite small full-order 

model considered in this work (greater speedups should be obtained for the larger model).  

In future work we could enable the use of POD-ITPWL for the larger and much more complicated 

subsurface flow models. 

 

REFERENCES 
[1]. M. Rewienski, J. White. A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and 

micromachined devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 22(2): 155–170, 2003.      

[2]. N. Dong and J. Roychowdhury. General-purpose nonlinear model-order reduction using piecewise-polynomial representations. IEEE 

Transactions on Computer- aided Design of Integrated Circuits and Systems, 27(2): 249-264, 2008. 
[3]. Y. Liu, W. Yuan, H. Chang. A global maximum error controller-based method for linearization point selection in trajectory 

piecewise-linear model order reduction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 33(7): 1100–1104, 2014. 

[4]. D. Vasilyev, M. Rewienski, and J. White. Macromodel generation for BioMEMS components using a stabilized balanced truncation 
plus trajectory piecewiselinear approach. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 

25(2):285–293, 2006. 

[5]. David Gratton. Reduced-order trajectory piecewise-linear models for nonlinear  computational fluid dynamics. In: 34th AIAA Fluid 
Dynamic Conference, 2004. 

[6]. M. A. Cardoso, L. J. Durlofsky. Linearized reduced-order models for subsurface  flow simulation. Journal of Computational Physics, 
229(3): 681-700, 2010. 

[7]. J. He, J. Satrom, L. J. Durlofsky. Enhanced linearized reduced-order models for subsurface flow simulation. Journal of Computational 

Physics, 230(23): 8313-8341, 2011. 
[8]. J. He, L. J. Durlofsky. Reduced-order modeling for compositional simulation by use of trajectory piecewise linearization. SPE Journal, 

19(5):858-872, 2014. 

[9]. J. He, L. J. Durlofsky. Constraint reduction procedures for reduced-order subsurface flow models based on POD-TPWL. International 
Journal for Numerical Methods in Engineer, 103 (1):1-30, 2015.  

[10]. Sumeet Trehan, Louis J. Durlofsky. Trajectory piecewise quadratic reduced-order model for subsurface flow, with Application to 

PDE-constrained optimization. Journal of Cpmputational Physics,  326: 446-473, 2016. 
[11]. Seonkyoo Yoon, Zeid M. Alghareeb, John R. Williams. Hyper-Reduced-Order Models for Subsurface Flow Simulation. SPE Journal, 

21(6):2128-2140, 2016. 

[12]. S. A. Nahvi, M. Nabi, and S. Janardhanan. Trajectory Based Methods for Nonlinear MOR: Review and Perspectives. IEEE Int. 
Conf.Signal Processing, Computing and Control, 2012, 1-6. 

[13]. VOSS T., PULCH  R., TERMATEN J., ELGUENNOUNI A. Trajector Piecewise Linear Aproach for Nonlinear 

Differential-Algebraic Equations in Circuit Simulation. Scientific Computing in Electrical Engineering, Mathematics in Industry, 11: 
167-173, 2007. 

[14]. J. D. Jansen. Systems Description of Flow Through Porous Media. Springer: Springer Briefs in Earth Sciences, 2013, 21-36. 

[15]. M. A., Cardoso, L. J., Durlofsky, and P., Sarma. Development and Applicationof Reduced-Order Modeling Procedures for Subsurface 
Flow Simulation. International Journal for Numerical Methods in Engineering, 77(9): 1322-1350, 2008. 

[16]. J. F., van Doren, R. Markovinovic, J. D., Jansen. Reduced-Order Optimal Control of Water Flooding using Proper Orthogonal 

Decomposition. Computational Geosciences, 10: 137-158, 2006. 
 

 

 
 

Guo-Jing Chen,etal. "Improved Trajectory Piecewise Linear Combined with POD Model Order 

Reduction for Subsurface Flow Simulation." International Journal of Engineering Science 

Invention (IJESI), Vol. 09(04), 2020, PP 45-56. 

 

 

 

 


