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Abstract: This paper is concerned with the condition for the convergence to a quaternion doubly stochastic 

limit of a sequence of matrices obtained from a non-negative matrix A by alternately scaling the rows and 

columns of A and with the condition for the existence of diagonal matrices D1 and D2 with positive main 

diagonals such that D1 A D2 is quaternion doubly stochastic.The result is the following the sequence of matrices 

converges to a doubly stochastic limit if and only if the quaternion matrix A contains at least one positive main 

diagonal.A necessary and sufficient condition that there exists diagonal matrices D1 and D2 with positive main 

diagonal matrices such that D1 A D2 is both quaternion doubly stochastic and the limit of the iteration is that A 

≠ 0 and each positive entry of A is contained in a positive diagonal. The form D1 A D2 is unique, and D1 and D2 

are unique up to a positive scalar multiple if and only if A is fully indecomposable. 
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I. Definitions: 
 If A ∈ H

 n x n
 is a quaternion doubly stochastic matrix and σ  is a  Permutation of         

 1 …… . . n , then the sequence of elements a1, σ 1 …..an , σ(n) is called the diagonal of A corresponding to σ. If σ 

is the identity, the diagonal is called the main diagonal. 

            If A is a non-negative square matrix, A is said to have total support if A ≠ o and if every positive 

element of A lies or a positive diagonal. 

 

II. Theorem: 
 Let A be a nonnegative n x n quaternion matrix. A necessary and sufficient condition that there exists a 

quaternion doubly stochastic matrix B of the form D1 A D2  where D1 and D2 are diagonal matrices with positive 

main diagonals is that A has total support. If B exists then it is unique. Also D1 and D2 are unique upto a scalar 

multiple if and only if A is fully indecomposable. 

 A necessary and sufficient condition that the iterative process of alternately normalizing the rows and 

columns of A will converge to a quaternion doubly stochastic limit is that A has support. If A has total support, 

this limit is the described matrix D1 A D2 . If A has support which is not total, this limit cannot be of the form D1 

A D2 . 

PROOF: 

 Suppose B = D1 A D2  and B '  
= D1’A D2’ are quaternion doubly stochastic matrix. 
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       On m x M, Piqj = and it follows that B [m/M] = B' [m/M] is quaternion
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If A is fully indecomposable, A(m/M] and A (m/M) thus cannot exist.

In such a case A = A(m/M]. Thus D AD  = D 'AD ' and D  and D  are themselves 

unique upto a scalar multiple.

             If A(m/M] and [
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m/M) exists, B(m/M) and B'(m/M) exist  and are each 

quaternion doubly stochastic matrices of order less than n. Further more B(m/M) 

D " A(m/M) D " and B'(m/M)  = D "'A(m/M)D '"

Where the D's are diago
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nal matrices with positive main diagonals. The argument may 

be repeated on these submatrices until D AD  = D 'AD ' is established.

 

1
1

  

 













1 2

k

1

Lemma - 1

       If A  H  is a row stochastic quaternion matrix and , ,....  are 
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         Let A = (a ) be an nxn non-negative quaternion matrix with total support and 
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The former leads to a row of zeros and the latter

   to a column of zeros in D A D . In either case D A D . In either case D A D  could not be 

   quaternion doubly stochastic matrix.
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