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. Introduction

The algebraic theory of semigroups was studied by CLIFFORD [1, 2], PETRICH [3] and LJAPIN
[4].The ideal theory of semigroups was developed by ANJANEYULU A [5].

Many researchers have been extending the concepts and results of abstract algebra.
As we know, in paper[6,7], P.M.Padmalatha et al introduced the concept of completely prime po ideals, prime
po ideals and po filters of partially ordered semigroups(po semigroups), in that define m-system and n-system of
po semigroup.

L A ZADEH]I8] introduced the notion of fuzzy subset of a set in 1965.Since then, a series of research
on fuzzy sets results fuzzy logic, fuzzy set theory, fuzzy algebra etc. A ROSENFELD [9] is the father of fuzzy
abstract algebra. N Kuroki developed fuzzy ideal theory of semigroups. N Kehayopulu and M Tsingelis[10]
introduced the notion of fuzzy ideals in partially ordered semigroups (po semigroups). Xiang-Yun Xie,, Jian
Tang[11] introduced ordered fuzzy point, fuzzy left(right) ideal of an ordered semigroup and completely
semiprime fuzzy ideal of ordered semigroup. J. N. Mordeson et al[12] proved relations between fuzzy points of
semi group. In Paper [13] defined fuzzy filters and fuzzy bi-filters of an ordered semigroup. In Paper[14]
establish the relation between Prime fuzzy ideal and fuzzy m-system of S.

Il. Preliminaries
Definition 2.1: [6] A semigroup S with an ordered relation < is said to be posemigroup if S is a partially
ordered setsuchthata < b = ax < bx,xa <xb forall a,b,x € S.
Definition2.2: A function f from S to the closed interval [0,1] is called a fuzzy subset of S.
The po semigroup S itself is a fuzzy subset of S such that S(x)=1, vx € S. It is denoted by S or 1.
Definition2.3: Let A be a non-empty subset of S. We denote f,, the characteristic mapping of A. i.e., The
mapping of S into [0,1] defined by
f (x):{1 ifxeA Then f, is a fuzzy subset of S
A 0ifxegA A '
Definition 2.4: Let f and g be two fuzzy subsets of po semigroup S. Then the inclusion relation fcg is defined
by f(x)<g(x), V X€ES.
Definition 2.5: Let (S, <) be a po semigroup and f,g be two fuzzy subsets of S. For x € S theproduct fog is
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f(y) Ag(z) ifx < yz exists
defined by (fog)(x { xsyz
y (fog)(x) = otherwise

Definition2.6:[11]Let S be a posemigroup. A fuzzy subset f of S is called a fuzzy left ideal of S if (i) x < y then

flx) > f(y) (ii) f(xy) > f(y), VX,y €S.

Definition2.7: [11]Let S be a posemigroup. A fuzzy subset f of S is called a fuzzy right ideal of Sif (i) x <y

then f(x) > f(y) (ii) f(xy) > f(x), V X,Y€ES.

Definition2.8:[11]Let S be a posemigroup. A fuzzy subset f of S is called a fuzzy idealof S if (i) x <y then f(x)

> f(y) (ii) f(xy) = f(y), f(xy) > f(x), V X,Y€S.

Definition2.9: Let S be a po semigroup, a € Sand A € (0,1]. An ordered fuzzy point a, of S defined by a; (x) =
Aifx € (a]

{0 ifx ¢ (a]

clearly a, is a fuzzy subset of S. For every fuzzy subset f of S, we also denote a; S f by a, €f

Definition 2.10: A fuzzy ideal f of a po semigroup S is called completely prime fuzzy idealifVv two ordered

fuzzy points x,y. of S ( Vvtre (0,1]) such that x0y, Sf then x, Sf or y.cf .

Definition 2.11: Let S be a po semigroup. A fuzzy ideal f of S is said to be prime fuzzy ideal if V 2 fuzzy ideals

gand h of S, goh < fthen either g < for h C f.

Definition 2.12: Let f be a fuzzy subset of a po semigroup S. f is said to be fuzzy m-system of S provided if

f(x) > ty,f(y) > t, > 3c,s €s 3 f(c) >ty Vtzand ¢ < xsy.

I11. Completely Semiprime Fuzzyideals And Semiprime Fuzzy Ideals
Definition 3.1: A fuzzy ideal f of a po semigroup S is said to be a completely semi prime fuzzy idealif for any
fuzzy point a, of S such that a,™ < ffor some n € N then a, < fwhere t € (0,1].
Theorem 3.2:Let f be a fuzzy ideal of a po semigroup S.f is completely semiprime fuzzy ideal iff for any
ordered fuzzy point a, of Ssuch thata,? € f = a, S f.
Proof: Suppose f is completely semiprime fuzzy ideal then clearly ifa,? € f = a, S f.
Conversely suppose that a,> € f = a, S f.
We prove this by induction on n. This is true for n = 2.
Assume that this is true for n = k.
= aXloaftl csofc f= a2 cf= (a)? cf= aX S f= a, S fbyinductive hypothesis. Therefore f is
completely semiprime fuzzy ideal.
Theorem 3.3: If fis completely semiprime fuzzy ideal of a po semigroup S then for x € S for every A;,A, €
(0,1](Dxy, 0%y, € f= x;,0x,,0S € f
(i) x),050xy, € f  (iii) Soxy, 0x,, € f.
Proof: Let f be completely semiprime fuzzy ideal of a po semigroup S
Suppose x;, 0x;, < f.
Consider (x;\lox;\zoS)2 = (X3, 0X),05)0(Xy, 0%y, 0S)
= (X3, 0X),05)0(Xy, 0%y, )0S
C SofoS cf
= (x;\lox;lzoS)z C f= (x3,0x%,,0S) C f since fis completely semiprime fuzzy ideal.
Consider (x;,0x;,)* = (XAZOXM)O(XAZOXM) = x;\zo(x}\lox;\z)oxk1 C SofoS c f
= X,0%), €f

Consider (x,0 S 0x3,)% = (X3,0 S 0x3,)0(X,0 S0 Xy,)

=X3,0S0(X),0%;3,)0S0%X,, < SofoS c f
therefore x,, 0Sox,, < fsince f is completely semiprime fuzzy ideal.
Consider (So x,,0 x;\z)2 = (Soxy, 0%),)0(S0X), 0Xy,)

= S0(x),0%,,05)0 X;, 0X;, & SofoS C f
Therefore Sox,, 0x,, < fsince f is completely semiprime fuzzy ideal.
Corollary 3.4: Let fbe a fuzzy ideal of a po semigroup S. If fis completely semiprime then for every two
ordered fuzzy points x., y. of S such that x,oy, < fthen < x, > o <y, >C fwheret,r € (0,1].
Theorem 3.5:Every completely prime fuzzy ideal of a po semigroup S is a completely semiprime fuzzy ideal of
S.
Proof: Let f be completely prime fuzzy ideal of a po semigroup S and a, be any ordered fuzzy point of S such
that a’cf= ao0a, Sfa cf
Therefore f is completely semiprime fuzzy ideal.
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Theorem 3.6: Let f be prime fuzzy ideal of a po semigroup S. If fis completely semiprime ideal of S

then fis completely prime fuzzy ideal.

Proof: Let f be completely semiprime fuzzy ideal of S.

Let x,0y, € f =< x, > 0 <y, >C fby corollary 3.4

= x, € fory, C fsince fis prime fuzzy ideal.

Therefore f is completely prime fuzzy ideal.

Theorem 3.7: The nonempty intersection of any family of completely prime fuzzy ideals of a po semigroup S is

a completely semiprime fuzzy ideal of S.

Proof: By[5.6 ,14], intersection of family of fuzzy ideals of a po semigroup is a fuzzy ideal.

Let {f,} be an arbitrary family of completely prime fuzzy ideals of S such that n f, # @.

Clearly n f, is a fuzzy ideal.

Letx,?2 enf, = x,° € f, for eacha.

= x, € f, for each a,since f, is completely prime fuzzy ideal.

Therefore N f, is completely semiprime fuzzy ideal of S.

Definition 3.8: A fuzzy subset f of S is said to be a fuzzy d-systemof Sif x, € f = x,» < fforevery n € N and

t € (0,1].

Theorem 3.9:Let f be fuzzy ideal of a po semigroup S.f is completely semiprime fuzzy ideal iff 1 — f'is a fuzzy

d-systemof Sif 1 — f = @.

Proof: Suppose that f is a completely semiprime fuzzy ideal of S.

Letx, €1 —-f=ax €f=fx) <t

If possible suppose x," € 1 —f = x," C fforeveryn € N = x,2 € f= x, € fwhich is contradiction.

Therefore x," € 1 — f = 1 — fis a fuzzy d-system.

Conversely suppose 1 — f is fuzzy d-system of S.

Letx,> € f.Supposex, £ f=>x, €1 —f=>x" S 1—fforeveryn €N

= x2S 1-f = x2 ¢f,which is contradiction.

Therefore x, € f = fis completely semiprime fuzzy ideal.

Definition 3.10: A fuzzy ideal f of a po semigroup S is said to besemiprimeif g is a fuzzy ideal of Sand g" < f

for some natural number n then g C f.

Theorem 3.11: A fuzzy ideal f of a po semigroup S is semiprime iff g is fuzzy ideal of S such that g? < f then
gcf

Proof:Suppose f is semiprime fuzzy ideal.

If g2cf=>gcf.

Conversely suppose that if g2 € fthen g € f. We prove that if g" € f for some natural number nthen g € f by

using induction on n.

Since if g2 < fthen g C f, it is true for n = 2.

Assume that gk € fforsomek € N,1<k<n=>gcf.

Now assume gt*1 c f = ghtlogk*! c fsince f is fuzzy ideal

s>gkcf= (g)lcfoghcfsgcef

By induction, f is semiprime fuzzy ideal.

Theorem 3.12: Everyprime fuzzy ideal of a po semigroup S is semiprime fuzzy ideal.

Proof: Let f be prime fuzzy ideal of a po semigroup S.

Let g2  fwhere g is a fuzzy ideal = g C fsince f is prime fuzzy ideal.

Therefore f is semiprime fuzzy ideal.

Theorem 3.13: If f is a fuzzy ideal of a po semigroup S then the following are equivalent.

(@) fis a semiprime fuzzy ideal.

(b) For an ordered fuzzy point a,,< a, >’C f= a, S f.

(c) For any a,Soa,0Soa;0S € f=a, € f.

Proof:(a) = (b) is obvious.

(b) = (c):Let a, be a fuzzy point of S such that Soa,0Soa,0S < f.
Here < a, >= (a, U a,0S U Soa,; U Soa,o0S)
=< a, >%= (a, U a,0S U Soa, U Soa,0S)o(a, U a,0S U Soa, U Soa,0S)
C So(a; Ua,0S U Soa, U Soa,0S) S Soa, U Soa,0S € Soa,0Soa,oS < f
=< a, >% € fFrom (b),a, € f
(c) = (a):
For any a,, if Soa,0Soa,oS < fthen a, c f.
Let g be any fuzzy po ideal of S such that g? c f.
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Suppose if possible g & f = there exists a fuzzy pointa, € gand a, & f.
Since a, € g. Now a,0S0a,0S € g?> € f = a, C f, Which is a contradiction.
= g C f. Therefore fis a semiprime fuzzy ideal of S.
Theorem 3.14: Every completely semiprime fuzzy ideal of a po semigroup S is a semiprime fuzzy ideal of S.
Proof: Suppose that f is completely semiprime fuzzy ideal of S.
Let a, be any ordered fuzzy point of S such that < a, >"< fforsome n € N.
Now a,0a,0a; .....0a,(ntimes)c< a," >C< a, >"cf
>al'cSf=2a,cf =<a, >cf bytheorem3.13.
Therefore f is a semiprime fuzzy ideal of S.
Theorem 3.15: Let S be a commutative po semigroup and f be a fuzzy ideal of S. Then f is completely
semiprime fuzzy ideal iff f is semiprime fuzzy ideal.
Proof: Suppose f is completely semiprime fuzzy ideal. By theorem 3.14,f is a semiprime fuzzy ideal of S.
Conversely, suppose that f is semiprime fuzzy ideal of S.
Let a, be any ordered fuzzy point of S, a," < f for some n € N.
Now a,” € f=< a, >"C f =< a, >C fsince f is semiprime fuzzy ideal = a, < f
Therefore f is completely semiprime fuzzy ideal of S.
Theorem 3.16: The non-empty intersection of arbitrary family of prime fuzzy ideals of a po semigroup S is a
semiprime fuzzy ideal.
Proof: Let {f,} be an arbitrary family of prime fuzzy ideals of S such that n f, # @.
Clearly n f, is a fuzzy ideal by [4.9 ,14].
Let a, be any ordered fuzzy point of S such that < a,> >c nf, = < a,2 >C f, for each
=>< a, >cf, foreacha = <a, > nf,
Therefore intersection of arbitrary family of prime fuzzy ideals of a po semigroup S is a semiprime fuzzy ideal.
Definition 3.17: Let f be a fuzzy subset of a po semigroup S.f is said to be fuzzy n-system
of S provided if f(x) >t =>3c€S,s€S31(c) >tandc < xsxwherex € Sand t € (0,1].
Theorem 3.18: Every fuzzy m-system of a po semigroup S is a fuzzy n-system.
Proof: Let f be a fuzzy m-system of a po semigroup S.
Let f(x) > t forsome x € Sand t € (0,1].
Since f(x) > t and f is fuzzy m-system of S.
= Jc€eSseS3f(c)>tvt=tandc < xsx
= f(c) > t and ¢ < xsx whenever f(x) >t
= f'is fuzzy n-system of S. Therefore every fuzzy m-system is a fuzzy n-system.
Corollary 3.19: Let f be a semiprime fuzzy ideal of a po semigroup S. If x.0Sox, < ffor some ordered fuzzy
point x,. of S thenx, € f
Proof: Let f be semiprime fuzzy ideal of S. Let x,0Sox, € f
Consider (Sox,0S)? = (Sox,05)0(So0x,0S) S So(x,0S0x,)0S S SofoS & f
= (Sox,0S)? < fand fis a semiprime fuzzy ideal of S.
= (Sox,0S) Cf. By[3.6,11], (x,)® S Sox,0SCf =>x, Cf
Theorem 3.20: Let f be a fuzzy ideal of a po semigroup S. If f is semiprime fuzzy ideal iff 1 — fis a fuzzy n-
systemif1 —f#0Q
Proof: Let f be a semiprime fuzzy ideal of S.
Let(1-H) >t =>fx)<1—-t>x&f
From corollary 3.19, x; .0 So x;_, & fsince fis semiprime fuzzy ideal.

> xsx)1 Ef =2f(xsx) <1—-t =1 -1f)(xsx) >t
= 1 —fis a fuzzy n-system.
Conversely, suppose that 1 — fis fuzzy n-systemand 1 —f = @
Let g be fuzzy ideal of S such that g2 C f.
Suppose g € f = there exist an ordered fuzzy point x, 3 x, S gand x, € f

>R <A=20-HE)>1-1r

= there exists ¢,s € Ssuchthat (1 —f)(c) > 1 —Xand c < xsx = f(c) <A
Since ¢ < xsx = f(c) = f(xsx) = f(xsx) < A
Butx, € g, By[7.6.1(3),12], x;0x, S gog =g? C f
= (x50x)(t) < f(t) = f(t) = AL forevery t € S.
But xsx € S = f(xsx) = A which is contradiction. Thereforeg C f.
= fis semiprime fuzzy ideal of S.
Theorem 3.21: If f is a fuzzy n-system of a po semigroup S and f(x) > t forsome x € S then there exists a subset
M of S such that f is fuzzy m-system on M.
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Proof: Define c; = x since f(c;) > t then there exists c, € S,s; € Ssuch that f(c,) > t and ¢, < ¢ys1¢q since f
is fuzzy n-system.

since f(c,) > t then there exists c3 € S, s, € S such that f(c3) > t and c3 < c¢;s,¢, and so on

In general, if c; has been defined, choose c;,1 as ¢4 € S,s; € S such that f(c;,;) > t and ¢;;1 < ¢;sic;.
Construct M = {cy, ¢y, ... ... Ciy Cig 1y ve vere }

clearly M is a subset of S. Let c;, ¢; € M fori <j = f(c;) > t, f(c;) > t and also clearly ¢;,; € M = fis a fuzzy
m-system on M.

IV. Fuzzy Filters Of Po Semigroup
Definition 4.1: A po sub semigroup F of a po semigroup S is said to be po left filter of S if (a)a,b € S,ab €
F=>a€eF(b)abeSa<banda€eF=DbeF.
Note 4.2: A po subsemigroup F of a po semigroup S is a po left filter of S iff (a)a,beS,abeF=ac¢€
F(b)(F] € F.
Definition 4.3: Let S be a po semigroup. A fuzzy subsemigroup f of S is called a fuzzy left filter of S if
(Ax <y = f(x) < f(y)(b)f(xy) < f(x),Vx,y € S.
Theorem 4.4:[13]Let S be a po semigroup and A be a non-empty subset of S. Then A is a po left filter of S iff
the characteristic function f, is a fuzzy left filter of S.
Theorem 4.5: The non-empty intersection of two fuzzy left filters of a po semigroups is also a fuzzy left filter
of S.
Proof: Let f, g be two fuzzy left filters of po semigroup S. Let x <y,
Consider (fn g)(x) =f(x) Ag(x) < f(y) Agly) = fng)y) = (Fng)x) < (Fng)(y).
Consider (f n g)(xy) = f(xy) A gxy) < f(x) Ag(x) = (fn g x).
Therefore f N g is a fuzzy left filter of S.
Theorem 4.6: The non-empty intersection of a family of fuzzy left filters of a po semigroup S is also a fuzzy
left filter of S.
Proof: Let {f,},cs be a family of fuzzy left filters of a po semigroup S and let F = if, =, nf, N ...
Letx,y € Ssuchthatx <'y.
Consider F(x) = 4ehfu (X)) = 1) ALE) AGZE) A ... ...
LEGALEG AL A ...
aeafa () = F(y)

1A

= F(x) < F(y).
Consider F(xy) = genfo (xy) = f1(xy) A f,(xy) A f3(X9) A oo .

fl (X) N fz (X) N f3 (X) A
aeafa () = F(x)

A

= F(xy) < F(x).

Therefore Fis a fuzzy left filter of S.

Theorem 4.7: Let S be a po semigroup. A fuzzy subsemigroup f of S is a fuzzy leftfilter of S iff f' = (=1-f) isa
completely prime fuzzy right ideal of S.

Proof: Let f be a fuzzy left filter of S.

Letx,y € Ssuchthat x <y = f(x) < f(y) = f' (x) = f (y).

Consider f'(xy) =1 —f(xy) > 1 —f(x) = f'(x) = f (xy) = f (%).

= f'is a fuzzy right ideal of S.

Let x,y, be two ordered fuzzy points such that t,r € (0,1]

suppose x,0y, € f.Letx, € fandy, &€f = x, o1 —fand y, > 1—f
>l-xcfandl -y, cf>1-x)vV(Q-y)cf=21—-Ay)CEf
But(x,oy,) €S f =1—-f=>1—(x0y,)Df

=>fcl—(x,0y,) S 1— (x Ay.)which gives a contradiction.

Therefore either x, € fory, c .

= f" is a completely prime fuzzy right ideal of S.

Conversely assume that f' is a completely prime fuzzy right ideal of S.

Let x < y then f'(x) = f'(y) = f(x) < f(y)

Sincef (xy) = f'(x) = f(xy) < f(x).

Therefore fis a fuzzy left filter of S.

Corollary 4.8: Let S be a po semigroup and f is a fuzzy left filter of S. Then f'(= 1 — f) is a prime fuzzy right
ideal of Sif f' # @.

Proof:By Theorem 4.7,f" is a completely prime fuzzy right ideal of S.
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[6.12, p-3**] Every completely prime fuzzy ideal of Sisa prime fuzzy ideal of S.
Therefore if fis a fuzzy left filter of S then f' is a prime fuzzy right ideal of S.
Definition 4.9:[ 13]Let S be a po semigroup. A fuzzy subsemigroup f of S is called a fuzzy right filter of S if
(@) x<y=f(x) <f(y) (b) f(xy) < f(y),vx,y €S.
Theorem 4.10:[ 13] Let S be a po semigroup and A be a non-empty subset of S.Then A is a po right filter of S
iff the characteristic function f, is a fuzzy right filter of S.
Theorem 4.11: The non-empty intersection of two fuzzy right filters of a po semigroup S is also a fuzzy right
filter of S.
Proof: Let f, g be two fuzzyright filters of po semigroup S. Let x <y,
Consider(fn g)(x) = f) A gx) < f(y) Agly) = (fng)(y) = (Eng)x) < (ENng)(y).
Consider(f n g)(xy) = f(xy) A g(xy) < f(y) Ag(y) = (Fn @) (¥).
Therefore f N g is a fuzzy right filter of S.
Theorem 4.12: The non-empty intersection of a family of fuzzy right filters of a po semigroup S is also a
fuzzy right filter of S.
Proof: Let {f,},ex be a family of fuzzy right filters of a po semigroup Sand let F = ,Af, = f; nf, N ...
Letx,y € Ssuchthatx <'y.
Consider F(x) = 4ehfu (X)) = 1) ALE) AGZE) A ... ...

S fMALG AL A ...

= weafa ) = F(y)

= F(x) < F(y)
Consider F(xy) = 4enfa (xy) = fixy) AL (xy) Af3(Xy) A ...

S AL AR A ...

= wenfa ) = F(¥)
= F(xy) < F(y).
Therefore Fis a fuzzy right filter of S.
Theorem 4.13: Let S be a po semigroup. A fuzzy subsemigroup f of S is a fuzzy right filter of S iff f'(=1-f) isa
completely prime fuzzy left ideal of S.
Proof: Let f be a fuzzy right filter of S.
Letx,y € Ssuchthat x <y = f(x) < f(y) = f'(x) > f (y).
Consider f'(xy) =1 —f(xy) > 1 —f(y) = f (y) = f (xy) = f (y).
= f'is a fuzzy left ideal of S.
Let %, y, be two ordered fuzzy points such that t,r € (0,1]
suppose x,0y, € f.Letx, € fandy, &€f = x, o1 —fand y, > 1—f
>l-xcfandl—-y, cf=21-x)vV(A -y )<Sf=21-(xAy)CSf
But (x,0y,)Sf =1—f=>1-(x0y,)Df
=>fcl—(x,0y:.) S 1— (x Ay.)which gives a contradiction.
Therefore either x, € f' ory, c f'.
= f" is a completely prime fuzzy left ideal of S.
Conversely assume that f' is a completely prime fuzzy left ideal of S.
Let x < y then f'(x) > f'(y) = f(x) < f(y)
Sincef'(xy) = f'(y) = f(xy) < f(y).
Therefore fis a fuzzy right filter of S.
Corollary 4.14: Let S be a po semigroup and f is a fuzzy right filter of S. Then f'(= 1 — f) is a primefuzzy left
ideal of Siif f' = @.
Proof: By Theorem 4.13,f" is a completely prime fuzzy left ideal of S.
By [6.12, 14] Every completely prime fuzzy ideal of S is a prime fuzzy ideal of S.
Therefore if f is a fuzzy left filter of S then f' is a prime fuzzy left ideal of S.
Definition 4.15: Let S be a po semigroup. A fuzzy subsemigroup f of S is called a fuzzy filter of S if
(@) x <y = f(x) <f(y) (b) f(xy) < f(x) Af(y),Vx,y €S.
Theorem 4.16:[13] Let S be a po semigroup and A be a non-empty subset of S.Then A is a po filter of S iff the
characteristic function f, is a fuzzy filter of S.
Note 4.17: A fuzzy subsemigroup f of a po semigroup S is a fuzzy filter of S iff f is a fuzzy left filter, fuzzy right
filter of S.
Definition 4.18: A fuzzy filter f of a po semigroup S is said to be proper fuzzy filter if f = S.
Theorem 4.19: The non-empty intersection of two fuzzy filters of a po semigroup S is also a fuzzy filter of S.
Proof: Let f, g be two fuzzy filters of po semigroup S. Let x <'y,
Consider (fng)(x) = f(x) Ag(x) < f(y) Agly) = fng)(y)
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= (fng)x < (ng)y)
Consider (fn g)(xy) = f(xy) A g(xy) = f(x) A f(y) A g(x) Ag(y)
=f(x) A gx) A f(y) Agly)

=N AENDY).
Therefore f N g is a fuzzy filter of S.
Theorem 4.20: The non-empty intersection of a family of fuzzy filters of a po semigroup S is also a fuzzy filter
of S.
Proof: Let {f,},ex be a family of fuzzy filters of a po semigroup Sand let F = ,Af, = f; nf, N ...
Letx,y € Ssuchthatx <y.
Consider F(x) = gehfu(x) = i) AL AGZE) A ... ...

S fMALG ARG A ...
= aegfa (y) = F@y)

= F(x) < F(y).
Consider F(xy) = 4enfa (xy) = fixy) A (xy) Af3(Xy) A ...
AT ALK ALTG) AGZE) AT A ...
FOALEALBRA e JANEG ALG) ALEA L)

= weafa () A qebfo () = F() AF(Y)
= F(xy) = F(X) AF(y).
Therefore the nonempty intersection of fuzzy filters of a po semigroup S is a fuzzy filter of S.
Theorem 4.21: Let S be a po semigroup. A fuzzy subsemigroup f of S is a fuzzy filter of S iff f' (=1-f ) is a
completely prime fuzzy ideal of S.
Proof: Let f be a fuzzy filter of S.
Letx,y € Ssuchthat x <y = f(x) < f(y) = f (x) = f (y).
Consider f'(xy) = 1 — f(xy) = (1 — f(x)) A (1 — f(y)) = f'(x) Af (y).
= f'is a fuzzy ideal of S.
Let x,,y, be two ordered fuzzy points such that t,r € (0,1]
suppose x,0y, € f.Letx, € fandy, &€f = x, o1 —fand y, > 1—f
>l-xcfandl-y,cf=>1-x)vA-y)Ef=21-(xAy,)<cf
But (x,0y,) €f =1—f=1—(x,0y,) Df
= fc1- (x0y,) S 1—(x;Ay,), which is a contradiction
Therefore either x, € f' ory, c f'.
= {’ is a completely prime fuzzy ideal of S.
Conversely assume that f' is a completely prime fuzzy ideal of S.
Let x < y then f'(x) > f'(y) = f(x) < f(y)
Since f'(xy) = f'(x) and f'(xy) > f'(y) = f(xy) < f(x) and f(xy) < f(y)
= f(xy) < f(x) A f(y).
Therefore fis a fuzzy filter of S.
Corollary 4.22: Let S be a po semigroup. If fis a fuzzy filter then f'(= 1 — f) is a prime fuzzy ideal of S if
f =+ Q.
Proof: Let f be a fuzzy filter of S.
Bycor 4.8 and cor 4.14, f' is a prime fuzzy ideal of S.
Corollary 4.23: Let fbe a fuzzy subset of a commutative po semigroup S is a filter iff f'(= 1 — f) is a prime
fuzzy ideal of S.
Proof:Let f be a fuzzy filter of commutative po semigroup S.
By cor 4.22,f" is a prime fuzzy ideal of S.
conversely, assume that f" is a prime fuzzy ideal of S.
By[6.12,14], f’" is completely prime fuzzy ideal of S.
By theorem 4.21, fis a fuzzy filter of S.
Theorem 4.24: Every fuzzy filter f of a po semigroup S is a fuzzy m-system of S.
Proof: Letf be a fuzzy filter of S.
By cor 4.22, f' is a prime fuzzy ideal of S.
By [6.15, 14]f = (f')'is fuzzy m-system of S
Corollary 4.25: Let S be a po semigroup. If f is a fuzzy filter of S then f'(= 1 — f) is a completely
semiprimefuzzy ideal of S.
Proof: Let f be a fuzzy filter of S.
By Theorem 4.21, f' is a completely prime fuzzy ideal of S.
By Theorem 3.5,f" is a completely semiprime fuzzy ideal of S.
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Corollary 4.26: Every fuzzy filter f of a po semigroup S is a fuzzy d-system of S.

Proof: Suppose that f is a fuzzy filter of a po semigroup S.

By Cor 4.25,f" is a completely semiprime fuzzy ideal of S.

ByTh 3.9,(f) = fis a fuzzy d-system of S.

Corollary 4.27: let S be a po semigroup. If f is fuzzy filter of S then f'(= 1 — f) is a semi prime fuzzy ideal of
S.

Proof: Let f be a fuzzy filter of po semigroup S.

By Th 4.21, ' is a completely prime fuzzy ideal of S.

By Th 3.5,f" is completely semi prime fuzzy ideal of S.

By Th 3.15, f" is semiprime fuzzy ideal of S.

Corollary 4.28:Every fuzzy filter f of a po semigroup S is a po semigroup S is a fuzzy n-system of S.
Proof: Let f be a fuzzy filter of po semigroup S.

By Cor 4.27,f' is semiprime fuzzy ideal of S.

By Th 3.20,(f")" = fis a fuzzy n-system of S.

Definition 4.29: Let S be a po semigroup and f be a fuzzy subset of S. The smallest fuzzy left filter of S
containing f is called a fuzzy left filter of S generated by f and is denoted by < f; >.

Theorem 4.30: The fuzzy left filter of a po semigroup S generated by f is the intersection of all fuzzy left filters
of S containing f.

Proof: Let Abe the set of all fuzzy left filters of S containing f.

Since S itself is a fuzzy left filter of S containing f, S € Aso A+ @ .

LetF* = gegg, where g is the fuzzy left filter of S containing f.

sincefC gVgeEASTCSF >F %0

By Th 3.6, F* is the fuzzy left filter of S .

Let K be another fuzzy left filter of S containing f, clearly f € K and K is the fuzzy left filter of S.

= K€ A= F* c K. Therefore F* is the smallest fuzzy left filter of S containing f.

Hence F* is the fuzzy left filter of S generated byf.

Definition 4.31: Let S be a po semigroup and f be a fuzzy subset of S. The smallest fuzzy right filter of S
containing f is called a fuzzy right filter of S generated by f and is denoted by < f. >.

Theorem 4.32: The fuzzy right filter of a po semigroup S generated by fis the intersection of all fuzzy right
filters of S containing f.

Proof: Let A be the set of all fuzzy right filters of S containing f.

Since S itself is a fuzzy right filter of S containing f, S € Aso A+ @ .

LetF* = gE'A‘g, where g is the fuzzy right filter of S containing f.

sincefC gVgeEASfCF " =>F #0

By Th 3.12, F* is the fuzzy right filter of S .

Let K be another fuzzy right filter of S containing f, clearly f € K and K is the fuzzy right filter of S.

= K e A= F* c K. Therefore F* is the smallest fuzzy right filter of S containing f.

Hence F* is the fuzzy right filter of S generated byf.

Definition 4.33: Let S be a po semigroup and f be a fuzzy subset of S. The smallest fuzzy filter of S containing f
is called a fuzzy filter of S generated by f and is denoted by< f >.

Theorem4.34: The fuzzy filter of a po semigroup S generated by fis the intersection of all fuzzy filters of S
containing f.

Proof: Let A be the set of all fuzzy filters of S containing f.

Since S itself is a fuzzy filter of S containing f, S € Aso A= @ .

LetF* = gE'A‘g, where g is the fuzzy filter of S containing f.

sincefcC gVgeA=>fCF =2F %0

By Th 4.20, F* is the fuzzy filter of S .

Let K be another fuzzy filter of S containing f, clearly f € K and K is the fuzzy filter of S.

= K€ A= F* c K. Therefore F* is the smallest fuzzy filter of S containing f.

Hence F* is the fuzzy filter of S generated by f.

Definition 4.35: Let S be a po semigroup. A subsemigroup A of S is called a Bi-filter of S if
(a)aeAa<beS=beA(b)abceSandabce A=>a€Aandc € A.

Definition 4.36: Let S be a po semigroup. A fuzzy subsemigroup f of S is called fuzzy bi-filter of S if
(a) x < y then (x) < f(y)(b) f(xyz) < f(x) A f(z).

Theorem 4.37:Let S be a po semigroup and A be a non-empty subset of S. If A is a bi-filter of S iff the
characteristic function f, of A is a fuzzy bi-filter of S.

Proof: Let A be a bi-filter of S. Let x,y € Athen € A = f, (xy) = fA(xX) A fo(Y).
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Ifx,y & Athenf,(xy) = fA(x) A fo ().
Ifx € Aandy ¢ Athen fy(xy) = 0 = f,(x) A f4(¥).
By summarizing all these f, (xy) = fo(x) A f, (¥).
Letx,y € Ssuchthatx <y.
Ifx € Atheny € A = f,(x) = (y).If x €A then f, (x) = 0 < f, (V).
Thereforef, (x) < f, (y).
Letx,y,z €S, Ifxyz € Athenx € Aandz € A= fy(xyz) =1 = fL(X) A {4 (2).
If xyz ¢ Athenf, (xyz) = 0 < f,(x) A f,(2).
Thereforef, (xyz) < fA(x) A £ (2).
= f,is fuzzy bi-filter of S.
Conversely assume that f,is fuzzy bi-filter of S. Let x,y € A = f, (x) = 1 andf, (y) = 1.
Since f(xy) = fa(x) Afa(y) and f,(x) Afy(y) =1 = xy € A
LetxeAandx <y thenfy(x) =landfy(x) <fu(y) =2 fa(y) =1 >y €A.
Letx,y,z € Sand xyz € A = f,(xyz) = f, (x) A fy(2)

212N @)=2LEAfRE) =1=(x)=1andf,(z) = 1.
= a € Aand c € A = f, is fuzzy bi-filter of S.
Theorem4.38: The non-empty intersection of fuzzy bi-filters of a po semigroup S is also a fuzzy bi-filter of S.
Proof: Let f, g be two fuzzy bi-filter of S.
Consider (fn g)(xy) = f(xy) Aglxy) Z fx) Af(y) Ag) Agly) = (N A(Fng)(y) = (Fngkxy) =
N AENg(y).
Letx <y = f(x) < f(y) and g(x) < g(y) since f, g are bi-filters of S.
consider (fN g)(x) = f(x) Ag(x) < f(y) Ag(y) = (FNg)(y)
consider (f N g)(xyz) = f(xyz) A g(xyz) < f(x) Af(z) A g(x) A g(z)

<s(EngA(ENng(2)

= fn gisalso fuzzy bi-filter of S.
Theorem 4.39: The non-empty intersection of family of fuzzy bi-filters of S is also a fuzzy bi-filter of S.
Proof: Let f;, f,, ... .... f, be two fuzzy bi-filter of S.
Consider (f; n f, N ... ... Nnf)Ey) =fixy) AMf,xy) A ... ... AL (xy)

L)AL ALE)ALT) A ... f.x) AL (y)
=(fnfn...nf))AE NN LN E)(Y)
Let x<y =& <), LK) <6HG), v, H,K) < £, ()
consider NN ..nf)X=HEALE)A ... Af(X)

S tMALG) A o e ALY
= nf,n....nf)¥)
consider (f; Nnf, N ......n ) (xyz) = f; (xyz) A f,(xyz) A ... ... A f(Xy2Z)
<SHEALE@)ALE)ALE)A ... .. f,x) Af,(2)
= nhn. . .nf)AE NN ...0nf)(2)
=f,nf, n.....nf, isfuzzy bi-filter of S

V. Conclusion
The purpose of this paper ischaracterize completely semiprime fuzzy ideals,semipeime fuzzy ideals and fuzzy
filters of po semigroup, establish the relation between fuzzy filter and fuzzy n-system of a po semigroup S.
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