Plane Gravitational Waves in Four Dimensional, Space-Time (I)

Dr. B. G. Ambatkar

R. S. Bidkar Arts, Comm And Science College, Hinganghat – 442301, INDIA

Abstract :The	e plane $[(x + y + z) - t]$ type wave solutions of the field equations $R_{ij} = 0$ are obtain	ined in th	he form	
\overline{L}_2 - $\overline{\gamma}_4$ + $\frac{\gamma_4^2}{2}$ -	$L_2\gamma_4 + rac{L_1}{4} = 0 \operatorname{from} Q\gamma_{ij} + P\delta_{ij} = 0.$			
Date of Subm	Date of acceptance	Date of acceptance: 15-06-2018		
In our earlier	I. Introduction: work we refer it to L the solutions of $\mathbf{P}_{m} = 0$ were deduced in the form			
	$O\gamma_{ii} + P\delta_{ii} = 0$		(1.1)	
Which further	r were partitioned into			
	$\overline{\mathbf{w}}_1\gamma_{ij}+\overline{\mathbf{w}}_1\delta_{ij}=0= \overline{\underline{\phi}}_1\gamma_{ij}+\overline{\underline{\phi}}_1\delta_{ij} \;,$	(1.2)		
	$\overline{\mathbf{w}}_{2}\gamma_{ij} + \overline{\mathbf{w}}_{2}\delta_{ij} = 0 = \mathbf{\phi}_{2}\gamma_{ij} + \mathbf{\phi}_{2}\delta_{ij} ,$	(1.3)		
$W_1\gamma_{ij} + W_1\delta_{ij} = 0 = \phi_1\gamma_{ij} + \phi_1\delta_{ij}$, Since some of the expressions are needed here we reproduce them as follows.		(1.4)		
Since some o	$\delta_{11} = -\bar{\gamma}_{11} + \frac{1}{2} \left[\phi_1^2 L_1 - 4\phi_1 L_2 \gamma_1 + 2\gamma_1^2 \right],$			
	$\delta_{12} = -\bar{\gamma}_{12} + \frac{1}{2} \left[\phi_1 \phi_2 L_1 - 2L_2 \left(\phi_2 \gamma_1 + \phi_1 \gamma_2 \right) + 2\gamma_1 \gamma_2 \right].$			
	$\delta_{13} = -\bar{\gamma}_{13} + \frac{1}{2} \left[\phi_1 \phi_3 L_1 - 2L_2 \left(\phi_3 \gamma_1 + \phi_1 \gamma_3 \right) + 2\gamma_1 \gamma_3 \right],$			
	$\delta_{14} = - \bar{\gamma}_{14} + \frac{4}{4} \left[\phi_1 L_1 - 2L_2 (\gamma_1 + \phi_1 \gamma_4) + 2\gamma_1 \gamma_4 \right],$			
	$\delta_{22} = - \bar{\gamma}_{22} + \frac{4}{4} \left[\phi_2^2 L_1 - 4L_2 \phi_2 \gamma_2 + 2\gamma_2^2 \right],$			
	$\delta_{23} = - \overline{\gamma}_{23} + \frac{1}{4} \left[\phi_2 \phi_3 L_1 - 2L_2 \left(\phi_3 \gamma_2 + \phi_2 \gamma_3 \right) + 2\gamma_2 \gamma_3 \right] ,$			
	$\delta_{24} = - \bar{\gamma}_{24} + \frac{i}{4} \left[\phi_2 L_1 - 2L_2 \left(\gamma_2 + \phi_2 \gamma_4 \right) + 2\gamma_2 \gamma_4 \right],$			
	$\delta_{33} = - \bar{\gamma}_{33} + \frac{1}{4} \left[\phi_3^2 L_1 - 4L_2 \phi_3 \gamma_3 + 2\gamma_3^2 \right],$			
	$\delta_{34} = - \bar{\gamma}_{34} + \frac{i}{4} \left[\phi_3 L_1 - 2 L_2 \left(\gamma_3 + \phi_3 \gamma_4 \right) + 2 \gamma_3 \gamma_4 \right] ,$			
	$\delta_{44} = - \bar{\gamma}_{44} + rac{1}{4} \left[L_1 - 4 L_2 \gamma_4 \right) + 2 {\gamma_4}^2] \; ,$			
And	$\gamma_{11} = \phi_1 \gamma_1 - L_2 \phi_1^2, \qquad \gamma_{12} = \frac{1}{2} \left[\phi_2 L_1 + \phi_1 \gamma_2 \right] - L_2 \phi_1 \phi_2,$			
	$\gamma_{13} = \frac{1}{2} \left[\phi_1 \gamma_1 + \phi_1 \gamma_3 \right] - L2 \phi_1 \phi_3, \qquad \gamma_{14} = \frac{1}{2} \left[\phi_3 \gamma_1 + \phi_1 \gamma_2 \right] - L_2 \phi_1,$			
	$\gamma_{22} = \phi_2 \gamma_2 - L_2 \phi_2^2, \qquad \gamma_{23} = \frac{1}{2} [\phi_1 \gamma_2 + \phi_2 \gamma_3] - L_2 \phi_2 \phi_3,$			
	$\gamma_{24} = \frac{1}{2} [\gamma_2 + \phi_2 \gamma_4] - L_2 \phi_2, \qquad \gamma_{33} = \phi_3 \gamma_3 - L_2 \phi_3^2,$			
	$\gamma_{34} = \frac{1}{2} [\gamma_3 + \phi_3 \gamma_4] - L_2 \phi_3, \qquad \gamma_{44} = \gamma_4 - L_2.$	(1.5)		
[(x + y + z) -	t] -type wave			
we denote Z	= (x + y + z) - t. In the usual notation of 1, we have $\phi_{1} - \frac{z_{1}}{z_{1}} = -1$ $\psi_{2} = (y + z) - 7$ $P = -1$ $Q = 0$	(2 1)		
	$\psi_1 - \frac{1}{Z_{A}} - \frac{1}{1}$, $\psi_1 - (y + z) - 2$, $1 - 1$, $Q = 0$	(2.1)		
		(2.2)		
and	$\phi_3 = \frac{Z_{1,3}}{Z_{1,4}} = -1$, $w_3 = (x + y) - Z$, $P = -1$, $Q = 0$	(2.3)		
From (2.1), (2.2) and (2.3), the equations (1,1) reduce to the condition $\delta = 0$	(2,4)		
Using (2.4), t	$\sigma_{ij} = 0.$ he equations (1.5) yield	(2.4)		
	$\mathbf{X}_1 (2\overline{\phi}_1 - \mathbf{X}_1) = 0 ,$		(2.5)	
	$X_2 (2\phi_2 - X_2) = 0,$		(2.6)	
where	$\begin{aligned} \mathbf{A}_3 \left(\angle \mathbf{\varphi}_3 - \mathbf{A}_3 \right) &= \mathbf{U} ,\\ \mathbf{X}_1 &= \mathbf{\gamma}_2 - \mathbf{\phi}_1 \mathbf{\gamma}_4 . \end{aligned}$	(2.8)	(2.7)	

$$\begin{array}{c} X_{2} = \gamma_{2} - \phi_{2} \gamma_{4}, \qquad (2.9) \\ X_{3} = \gamma_{2} - \phi_{3} \gamma_{4}, \qquad (2.10) \end{array}$$

Since $\phi_{1} = \phi_{2=} \phi_{3=} - 1$ and $\bar{\phi}_{1=} = \bar{\phi}_{2=} \bar{\phi}_{3=} 0$, the equations (2.5), (2.6) and (2.7) imply $X_{1} = 0$ i.e., $\gamma_{1} = -\gamma_{4}, \qquad (2.11) \\ X_{2} = 0$ i.e., $\gamma_{2} = -\gamma_{4}, \qquad (2.12) \\ X_{3} = 0$ i.e., $\gamma_{3} = -\gamma_{4}, \qquad (2.13) \end{array}$

From (2.11), (2.12) and (2.13), it is observed that $\gamma_1 = \gamma_2 = \gamma_3$ and hence equation (2.4) reduces to $\overline{L}_2 - \overline{\gamma}_4 + \frac{\gamma_4^2}{2} - L_2 \gamma_4 + \frac{L_1}{4} = 0$

(2.14)

It is to be noted that (2.4) reduces to three different equations (2.5), (2.6), (2.7) and these are compounded into a single solution (2.14) due to $\gamma_1 = \gamma_2 = \gamma_3$.

We conclude that the Z = [(x + y + z) - t] -type wave and wave is characterized by (2.1), (2.2), (2.3), (2.11), (2.12), (2.13) and (2.14). if Z is independent of x and y then follows the work of Takeno (1961) from ours.

References

- [1]. Thengane K D and Karade T M (2000) Plane gravitational waves in four dimensional space-time (communicated).
- [2]. **Takeno** (1961) The Mathematical theory of plane gravitational wave in, general relativity scientific report of the research Institute for theoretical Physics. Hiroshima University, Japan.
- [3]. Adhao K S and Karade T M (1994) Post Reports, Japan No. 279

Dr. B. G. Ambatkar "Plane Gravitational Waves in Four Dimensional, Space-Time (I) "International Journal of Engineering Science Invention (IJESI), vol. 07, no. 06, 2018, pp 05-06