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Abstract: This article concerned with study of exact solution of deflection of inverse transient thermoelastic 

thin circular plate occupying the space  2 2: ( , , ) | 0 ,D x y z r x y a h z h        with the stated boundary 

conditions. The Marchi-Fasulo integral transform, Laplace integral transform are used and graphs are plotted 

using Microsoft office excel 2010. 
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I. Introduction 

 The inverse problems of thermoelasticity consist of determination of temperature distribution and 

thermal deflection of solids when the conditions of temperature and deflection are known at the some points of 

the solid under consideration. Grysa and Cialkowski [1], Grysa and Koalowski [2] studied one-dimensional 

transient thermoelastic problems and derived the heating temperature and heat flux on the surface of an isotropic 

infinite slab. Khobragade et al.[3] and [4] discuss an inverse steady state and transient thermoelastic problem of 

thin circular plate and annular disc in Marchi-Fasulo transform domain. Deshmukh et al. [5] investigated inverse 

heat conduction problem of semi-infinite, clamped thin circular plate and their thermal deflection by quasi-static 

approach. Ghonge and Ghadle [6]-[10] derived the exact solution to deflection of thermoelastic circular plate by 

using Marchi-Fasulo, Marchi-Zgrablich and Laplace integral transform. 

 In this work we modify the problem of Ghonge and Ghadle [6], and the results for temperature 

distribution, heat flux and quasi-static thermal deflection on outer surface of circular plate are discuss. The 

inverse transient heat conduction equation is solved by using Marchi-Fasulo and Laplace integral transform and 

the results for temperature distribution, unknown heat flux and thermal deflection function are obtained in terms 

of infinite series of Bessel's function and it is solved for special case by using MathCAD 2007 software and 

illustrated graphically by using Microsoft office excel 2010.  

 

II. Formulation of The Problem 

 Consider a thin circular plate of thickness 2h occupying the space 

 2 2: ( , , ) | 0 , .D x y z r x y a h z h        Suppose the plate is subjected to arbitrary known interior 

temperature ( , )f z t  within the 0 r a   region with third kind condition which assume to be zero at upper 

surface z h and lower surface .z h  Under this more realistic prescribed conditions, the unknown 

temperature on lower surface and quasi-static thermal deflection due to unknown temperature ( , )g z t are 

required to determine. The differential equation satisfying the deflection function as in Noda et al. [11] is given 

as 
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TM is the thermal moment of the plate defined as  
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and D is the flexural rigidity of the plate denoted as  
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, E and  are the coefficients of the linear thermal expansion, the Young’s modulus and the Poisson’s ration of 

the plate material respectively.  

Since the edge of the circular plate is fixed and clamped; 
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The temperature of the circular plate satisfying the heat conduction equation as in Ozisik [12] is as 
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with initial condition 
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the boundary condition's 
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and interior condition 
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 where 
1k and 

2k are the radiation constants on the two plane surfaces, k  is the thermal diffusivity of 

the material of the circular plate. The equations (1) to (11) constitute the mathematical formulation of the 

inverse transient thermoelastic deflection problem of circular plate. 

 

III. Solution of The Problem 
3.1 Determination of Temperature Function 

 First applying finite Marchi-Fasulo transform as defined in [3] to the equations (6), (7), (11) and using 

(8), (9), then applying Laplace transform as defined in Sneddon [13] to the equations in Marchi-Fasulo 

transform domain and then using inversion of Laplace transform as defined in Sneddon [13] and Marchi-Fasulo 

transform as defined in [3] respectively, one obtain the expression for temperature function ( , , )T r z t
 
as 
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 where m, n are positive integers, m are the positive roots of the transcendental equation  
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equation (12) is the desired solution of equation (6) with 1 2 1 11, k      and 
2 2k   . 

 

3.2 Determination of Unknown Temperature Function 

Using (12)in (8) once obtain the unknown temperature function ( , )g z t  as  
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equation (14) is the desired solution of equation (8) with 1 2 1 11, k    
 
and 2 2k   . 
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3.3 Determination of Quasi-Static Thermal Deflection Function 

Using (12) in equation (3) , we obtain  
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Assume the solution of (1) satisfying the (5) as  
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Using the (15), (16) and the result  
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in (1), once we obtain the expression for ( )nC t as  
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Substituting the equation (17) in the equation (16), once obtain the expression for thermal deflection function as  
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IV. Special Case and Numerical Results 
For formulation of special case of a circular plate. 

Setting   
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Applying finite Marchi-Fasulo transform as define in [3] to the equations (19), one obtain,  
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Now using (20), we obtain the necessary integral bellow  
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  For numerical result we set 
1 2 1, 1 , 0.5 , 1, 0.1k k a m m c h m       in equations (12),(14), (18) 

and once making use of integral in (21) and obtain the numerical results for temperature, heat flux and thermal 

deflection using MathCAD 2007 and depicted graphically using Microsoft office Excel 2010 as in Fig.1- Fig.3 
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Fig.1 Temperature distribution in circular plate 

 

 
Fig. 2 Unknown heat flux distribution in circular plate 

 

 
Fig. 3 Quasi-static thermal deflection in circular plate 
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V. Conclusions 
 In this work we have applied Marchi-Fasulo and Laplace integral transform to find the analytical 

solution of inverse transient heat conduction equations. The results are obtained in terms of Bessel's function in 

the form of Marchi-Fasulo transform series. The series solution converges provided we take sufficient number 

of terms in the series. Since the thickness of the plate is very small, the series solution given here will be 

definitely convergent. 

 Any particular case can be derived by assigning suitable values to the parameters and function in the 

series expressions. The temperature and quasi -static thermal deflection can be applied to the design of useful 

structures or machines in engineering applications. These types of inverse problems are very important in view 

of its relevance to various industrial machines subjected to heating such as the main shaft of lathe, turbines and 

the role of the rolling mill.  

 

References 
[1]. K. Grysa and M. J. Cialkowski, On a certain inverse  problem  of temperature and thermal stress fields, Acta Mechanics, 36, 1980, 

169-185. 

[2]. K. Grysa and Z. Koalowski, One dimensional problem of temperature and heat flux at the surfaces of a thermoelastic slab, Nuclear 
Engg., 74, 1982, 1-14. 

[3]. N. W. Khobragade and P. C. Wankhede, An inverse steady state problem of thin circular plate in Marchi-Fasulo transform domain, 

The Journal of Indian Academy of Mathematics, 25, No.2. 2003. 
[4]. K. W. Khobragade, V. Varghese and N. W. Khobragade, An inverse transient thermoelastic problem of a thin annular disc, Applied 

Mathematics E-Notes, 6, 2006, 17-25. 

[5]. K. C. Deshmukh, S. D.  Warbhe and V. S. Kulkarni, Quasi-static thermal deflection of thin clamped circular plate due to heat 
generation, Journal of Thermal Stresses, 32, 2009, 877-886. 

[6]. B. E. Ghonge and K. P. Ghadle, Study of exact solution of deflection of thermoelastic circular plate by using Marchi-Fasulo integral 

transform, Global Journal of Mathematical Science. 4(2), 2012, 115-122. 
[7]. B. E. Ghonge and K. P. Ghadle, An analytical approach to deflection of inverse transient thermoelastic thin circular plate-I, Global 

Journal of Computational Science and Mathematics, 1(2), 2011, 87-94.  

[8]. B. E. Ghonge and K. P. Ghadle, Inverse transient thermoelastic behavior of annular disc by using Marchi-Zgrablich and Laplace 
transform technique, International Journal of Physics and Mathematical Sciences, 1(1), 2011, 68-75. 

[9]. B. E. Ghonge and K. P. Ghadle, Deflection of Transient Thermoelastic Circular Plate by Marchi-Zgrablich and Laplace Transform 

Technique, Theoretical and Applied Mechanics Letter, 2(2), 2012, 021004. 
[10]. B. E. Ghonge and K. P. Ghadle, Two dimensional unsteady state non-homogeneous thermoelastic problem of circular plate, 

International Mathematical Forum, 7(33), 2012, 1645-1653. 

[11]. N. Noda, R. B. Hetnarski and Y.Tanigawa, Thermal stresses, 2nd Edition (Taylor and  Francis, New York, 2003). 
[12]. N. M. Ozisik, Boundary value problem of heat conduction (International Textbook Company, Scranton, Pennsylvania, 1968). 

[13]. I. N. Sneddon, The Use of Integral Transforms (McGraw-Hill Company, New York, 1974). 

Badrinath E Ghonge "An Inverse Transient Thermoelastic Behavior of Circular Plate by Using 

Marchi-Fasulo and Laplace Integral Transform "International Journal of Engineering Science 

Invention (IJESI), vol. 07, no. 11, 2018, pp 01-05 

 

 

 

 


