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Abstract: Phenomenological Ginzburg-Landau free energy functional with two order parameters was designed 

on the basis of general symmetric arguments and experimental data about the thermodynamics of UGe2 systems. 

Here, we develop a microscopic approach that on the basic of the mean-field theory and functional integral 

formalism, the two-component Ginzburg-Landau functional is established to show the correlation between the 

feromagnetic and triplet superconducting order parameters. The meaning of the constants encountered in the 

microscopic theory is clarified. 
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I. INTRODUCTION 
 Competition of superconducting (SC) and magnetic orders in heavy fermion systems [1-7] has been 

one of  the central issues for the condensed matter community in recent decade. In particular one usually is 

interested in materials showing the coexistence of SC and antiferromagnetic (AF) [2, 3] or ferromagnetic (FM) 

[4, 5] orders in uranium-based heavy fermions inter-metallic compounds. At low temperatures, a conventionally 

superconducting condensate is formed under the influence of an attractive force due to lattice vibrations which 

binds electrons with antiparallel spins in singlet Cooper pairs. Whereas, in ferromagnets below the Curie 

temperature, CT , the electron spins parallel align to produce a net magnetization. So a total suppression of 

conventional  superconductivity should occur in the presence of an uniform spontaneous magnetization M, i.e., 

in a standard ferromagnetic phase. The physical reason for this suppression is the opposite electron spins in the 

s-wave Cooper pair turn over along the vector M


 in order to lower their Zeeman energy and, hence, the pairs 

break down. Therefore, the ferromagnetic order can hardly coexist with conventional superconducting states. 

 However, experimental evidences for non-phase separated coexistence of ferromagnetic and 

superconducting orders has recently been found in UGe2 [4, 5, 6, 7]. They are in favor of  the point of  view that 

the ferromagnetism and superconductivity are caused by 5f-electrons in the same band, and magnetic-

fluctuations induceding  pairing are a possible mechanism. This indicates that the attractive effective interaction 

between the strongly renormalized heavy quasiparticles in UGe2 is not provided by the electron - phonon 

interaction as in ordinary superconductors, but rather is mediated by electronic spin fluctuations. In the vicinity 

of a ferromagnetic quantum critical point, critical magnetic fluctuations can mediate superconductivity by 

pairing the electrons in spin-triplet Cooper pairs, that is, the equal spin pairing states which have a nonzero total 

spin angular momentum ( 1)S  :   ( 1, 1)zL S  ,  ( 1, 1)zL S   ,  and the state   / 2    

( 1, 0)zL S  . These spin-triplet Cooper pairs have quantum states with parallel electron spins and therefore 

they can survive in the presence of magnetic moments. In recent years, beside experimental investigations which 

examine the dependence of the phase transition on the applied pressure and magnetic field, there are also 

theoretical researches that concentrate on finding out phase transition mechanism, natures of phases and the 

dependence of temperature of phase transition and spontaneous magnetization moment on the parameters of 

materials. Different mechanisms have been proposed such as: coupled charge density waves and spin density 

waves [8, 9], magnon exchange [10], electron interaction mediated by ferromagnetically aligned localized 

moments [11, 12], screened phonon interactions [13], d-electron exchange [14], M-trigger [15, 16], multiband 

model [17, 18, 19, 20]...These theoretical works have tackled the important issue and provided invaluable 

information about the interplay between AFM, FM and conventional SC, unconventional SC in the coexistence 

states. 

 The above consideration motivates transforming the fermionic field theory to an effective one based on 

the coupling fields which are expressed in terms of order parameter fields for different channels. The main 

purpose of this paper  is formulation of a microscopic two-component Ginzburg-Landau (G-L) functional which 
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can describe the coexistence of different phases. In our research, through the functional integral formalism, a 

microscopic Hamiltonian will be split into possible channels, then we can get a functional which only depends 

on order parameters. Based on the specific problem for ferromagnetic superconductivity of UGe2 systems, we 

will draw the formal performance of G-L functional for two order parameter system through calculations based 

on Green function. Analytical calculations were carried out to clarify the meaning of the constants encountered 

in our microscopic model. 

 

II. The Model Hamiltonian Of The System 
Our starting point is an interacting fermions model. In the terms of second quantization, the Hamiltonian of the 

system can be written as: 

 0 1H H H    (1.1) 

where, 

 †

0 (k) (k) (k).
k

H   


   

  
  (1.2) 

 0H  is unperturbed Hamiltonian describing the system of free fermions; ( )k


 and 
†

( )k


 are the 

annihilation and creation operators of the fermions with the spin projection ,    respectively; ( )k


  is the 

dispersion of the free fermions; and 

' ' ' '
1 21 2 1 2 2 1

' ' '
1 2 1 2

' † † ' '

1

, , , , ,

( , , ) ( ) ( ) ( ) ( )
2 2 2 2k k q

q q q q
H V k k q k k k k      

   

          

        
  (1.3) 

 1H   is a generic effective two - body interaction term of interacting electrons written in the normal 

order,  which may cover the contributions of other interactions in the system such as electron - phonon 

interaction, spin - spin interaction, ... even impurity - electron and impurity – impurity interactions. In both 

mathematical and physical aspects, the generic effective interaction term is very complicated and has no exact 

and explicit analytical expression.  

The grand partition function of the system can be represented via a functional integral as 

  † † †

1exp ( , )( ) ( , ) , ( )
k

k

Z D D d k k H  


          
   

            
   

  


 
  (1.4) 

 In order to convert our Hamiltonian into an effectively non-interacting one, we decouple quartic 

fermion term into quadratic terms. There are, at least, three inequivalent choices of pairing up the fermionic 

operators to construct the fermionic bilinear term of the generic two-body interaction. Those are pairings in the 

direct channel  
'1 1

† ( , , )k q
 

  
 

,  in the exchange channel  
'

2 1

† ( ', , , )k k q
 

  
  

,  in the Cooper channel 

 
' '2 1

( ', , , )k k q
 

 
  

 and  
2 1

†
( ', , , )k k q

 
 

  
[21]. Nevertheless, the ”right”  choice of the decoupling field 

should be only motivated by physical reasoning, i.e one has to proceed to derive an effective theory based on the 

coupling field later. In the simplest case, without spin-dependence of two-body matrix elements, the decoupling 

of all three channels are possible and all order parameters can coexist in the system considered. In this case, 

theoretical calculations, however, lead to different results, in other words, an apparent ambiguity exists. In order 

to avoid this fault, the simplest physical reason for including spin-dependence of the two-body matrix element in 

microscopic models is the contribution of exchange bosons reflecting the interactions between conducting 

electrons and bosonic background fluctuations which cause appearance of selected competing channels. 

Depending on how spin indexes are split ( , '   are ,    or    ),  we will have singlet 

superconducting order or triplet superconducting order, ferromagnetic order or antiferromagnetic order. If the 

order is singlet, the system can fully exist an antiferromagnetic phase plus singlet superconducting phase as in 

CeRhIn5 and CeIrIn5. If the order is triplet, the system can fully exist an ferromagnetic phase plus triplet 

superconducting phase as in UGe2  without depending on whether electron is localized or not. 

For this problem, the generic effective two-body interaction term †

1 ,H      can be broken down to a 

summation of two possible fermionic bilinear terms with arbitrary parameters  i ,  where  ,i d C  as 

 

 † 2 † 2 †

1 1 1, , ,d C

d CH H H                     (1.5) 

where the Hamiltonian 1

dH   and 1

CH   are the generic two-body interaction rewritten in the different fermionic 

bilinear terms: 



Microscopic Derivation Of The Two-Component Ginzburg-Landau Functional                                         

www.ijesi.org                                                              53 | Page 
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C
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  (1.7) 

 

and the values of the parameters i    should satisfy the identity 

 2 2 1d C     (1.8) 

For definiteness, we take the interaction matrix in a simple form 

 ' ' ' '
1 2 1 2 1 1 2 2

†( ) ( , ', ) ( )( , ', )d dV k k q V k k q
       

 
      

  (1.9) 

with a constant   ( , ', )d dV k k q V
  

. We consider also superconducting (SC) interaction only in the triplet 

channel, i.e., 

 ' ' ' '
1 21 2 1 2 1 2

†(V ) ( , ', ) (V )( , ', )( ) ( )C C y yk k q k k q i i      
 

      
  (1.10) 

with a constant   ( , ', )C CV k k q V
  

. 

   Introducing the auxiliary fields ( , )M k q
 

, ( , )d k q
  

 ( they are responsible for magnetism and 

superconductivity, respectively) and let’s consider a Gaussian functional integral over these fields 

  * * * *

0, , , exp , , ,W D M M d d S M M d d       
      

  (1.11) 

where 
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  (1.12) 

Shift the integration variables 
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  (1.13) 

then we obtain following Hubbard-Stratonovich (HS) transformation 
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  (1.14) 

with 
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1 2
1 2

( , , ) ( . ) yk q i d 
 

      

  
  (1.15) 

is a triplet order parameter. 

The grand partition function (1.4) becomes 

     * * * * * *

0

1
, , , exp , , , , , , , iZ D M M S M M F M M

W
                

     
  (1.16) 

   * *, , , , iF M M   
 

 
 describes the quadratic effective fermion system coupled to the auxiliary fields  ,M 


  

are introduced by the two-fold HS transformation 

          * * † † * *, , , , exp , , , , ,i iF M M D D S M M                  
   

  (1.17) 
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By introducing four component vectors, 

       † †( , ) ( , ) ( , ) ( , ) ( , )
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  (1.19) 
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  (1.20) 

the effective action (1.18) can be written in the bilinear form, 
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where      
1

0 ( , , ; , ', , )ig M k k q 



  

  is a 4 × 4 matrix given by, 
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The Gaussian integration over the Grassmann field can now be evaluated straight forwardly, giving the 

formal expression for grand partition function 

    
1* * * *

0 0

1 1
, , , exp , , , exp ln det .

2
Z D M M S M M g

W

  
              

  


   
  (1.24) 

The logarithmic contributions in (1.24) can be expanded as  if  it is function (a consequence trace operator), i.e., 

     
1 11 1

0 0 0 0

1

1 1 1
ln det ln ln ln ln ,

2 2 2
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N
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   (1.25) 

where 
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   (1.26) 

and *

0 0, , , ,e hG G F F  are 2 × 2 matrix given by, 

 0 0
0

0 0

; ; .

e e

e

e e

F FG G
G F

F FG G

    

    

      
               

  (1.27) 

 In Eq. (1.25), the trace operator is understood as spin, momentum and Matsubara frequency diagonal 

operator whose matrix elements give the free Greens function of the free fermions. 

Tracing matrix (1.26), retaining only pair order parameter terms which have closed momentum, boson 

Matsubara frequency, spin we obtain:first-order expansion 

     1
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  (1.28) 

quadratic expansion 
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quartic expansion 
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 (1.31) 

 

Expanding effective action in Eq. (1.24) with respect to the Hubbad-Stratonovich auxiliary fields  ,M 


to 

quartic order, only including terms allowed by symmetry of system and retains minimum numbers of the 

simplest terms to get the meaningful results, we will obtain G-L free energy functional with the participation of 

several order parameters describing relationship of density spin wave and superconductivity phases. 

         

 

2 2 4

2 22 4 2 2

1
(M, ) . .

1
. . .

f f

d

s s fs fs

C

f M M M
V

d u M v M
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  (1.32) 

 In Eq. (1.32), the first three terms describe part of the free energy of a standard isotropic ferromagnet, 

next three terms describe the superconductivity for 0M H   and last two that describe the interaction 

between the ferromagnetic order parameter M


 and the superconducting order parameter  . The microscopic 

expressions for the GL coefficients which are functions of temperature (and pressure etc.) are production of free 

Green functions of electrons and holes. They can be summed over fermion Matsubara frequency 

(2 1)n n T  
 
 and wave vectors k


 on the basis of Taylor series expansion technique and the application of  

the residue theorem. They are listed below.  

Now we construct the specific Ginzburg-Landau free energy functional for UGe2  starting from Eq. (1.32). Here 

we are only interested in the uniform phases, i.e, order parameters d


and M


 which do not depend on the spatial 

vector. From the definition of order parameters above, we find  

 

2
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  (1.33) 

 UGe2 is ferromagnet which have orthorhombic structure with magnetic moments oriented along one of 

the crystallographic axes. If we choose a coordinate system: / / , / / , / /x b y c z a  where the magnetic easy axis is 

the a-axis, then (0,0, )M M


. Because of the pair-breaking effect of strong exchange field M


, only the 

Cooper  pairs with parallel spins will survive. In this case of equal-spin pairing we can write vector d


 in the 

form  1 2( , ,0)d d d


, implying that the Cooper pair spin orientation points to the M


 direction. Then we have: 

         
 

 

4
4

0

4 24 2

0 1 2 0 1 2

2 2

1 2 0

2 2 2 2 2

0 1 2

. . ;

. 2 . .sin . 4 . . .sin . ;

. . . 2 . . .sin . ;

. . . 2 . . .sin . ,

z

z

z

M M

M M M

M M M

 

          

      

      



   

  

  

 

 

 

  (1.34) 

 where , j jd d  


, and 
1 2

     is the phase angle between the complex 1

1 1

i
d e

  and 

2

2 2

i
d e

 .  Substituting the expressions (1.33) and (1.34) back in Eq. (1.32), and then using the conditions of 
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equilibrium phases for the phase of coexistence of ferromagnetic and superconductivity orders (FS phase), given 

by: 1 1sin 1, / 2       , we can be rewritten G-L energy functional of the triplet ferromagnetic 

superconductor (1.32) in term of reduced form as follows 

 2 4 2 4 2 2 2

0 0( , )
2 2

f s

f s

b b
f M a M M a M M              (1.35) 

where 
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  (1.42) 

with the help of Eqs. (1.622.3), (1.644.2) and ( 3.527.3)  from Ref. [22] to reach the last equalities of (1.37), 

(1.38) and (1.39). 

 

III. CONCLUSION 
 We have derived microscopic derivation of two-component Ginzburg-Landau functional which 

described the relationship between the feromagnetic order parameter and the superconducting order parameter in 

UGe2. The Ginzburg-Landau functional reveals not only that the triplet gap amplitude couples quadratically 

with magnetization magnitude (
2 2

d M
 

)  but also that the triplet d


-vector couples linearly with the 

magnetization direction ( .( )iM d d
 

).  It is suitable the mean-field level in which coupling forces the d


-vector 

to align parallel or antiparallel to the magnetization. Although we focus on a microscopic model that has been 
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widely employed in studies of ferromagnetic metal UGe2 systems, most of our results follow from a Ginzburg-

Landau analysis, and as such should be applicable to other systems of interest, such as Ce-based and U-based 

compounds. 

Model (1.35) same as D.V. Shopova’ phenomenological model [15] which well described the coexistence of 

Meissner superconductivity and ferromagnetic order in UGe2. It elucidates and confirms results outlined in a 

recent Ref. [15], as well as confirms the shape of the GL free energy functional for the same problem, firstly 

derived in a somewhat different way by E. K. Dahl and A. Sudbo [23]. 
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