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Abstract:  In this paper, the model deals with competition in populations which diffuse in a circular bounded 

area. Migration of interacting marine animal species in ocean is considered. Pseudo Analytic Finite Partition 

Method (PAFPM) has been employed to find out the approximate solution of the dispersion problem in the non-

homogeneous region. A two dimensional circular region is considered. For angular direction the Fourier series 

has been used assuming angular uniformity in each part. After numerical verification graphs are plotted between  

the angle   and population density of species for constant time. 
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I. INTRODUCTION 
Migration of interacting marine animal species in ocean is considered in this paper. This situation may 

occur in rivers or oceans areas of arbitrary geometrical shapes. Pseudo Analytic Finite Partition Method 

(PAFPM) has been employed to find out the approximate solution of the dispersion problem in the non-

homogeneous region. A two dimensional circular region is considered. In this region, the environmental 

properties vary in radial direction and therefore, it is partitioned into annular sub regions to apply Ritz Finite 

Element Method. For angular direction the Fourier series has been used assuming angular uniformity in each 

part. In its normal use, the word migration or diffusion means to move from one place to another. When applied 

to animals it has a special meaning: a migration is a coming and going with the seasons, with a ‘once-a-year’ 

implication, and the most obvious examples are provided by birds. The local seasonal movements are merely 

change of ground at a particular time of the year. Some of these movements maybe very small, others larger 

while still confines within one geographical area. An example of the British Isles is the autumn migration of the 

Starlings to the south and west, and their return to the north and east in the following spring. The second group of 

movements is more extensive and classed as dispersals or wanderings. Only the breeding area is well defined and 

the movement is, ideally, an even and outward  

 

Spread from this centre. 

 
 

In particular, the pattern of fish migration is thought to confirm to that shown in figure 1. The young 

stages leave the spawning grounds at A for the nursery grounds at B; from the nursery grounds the juveniles 

recruit to the adult stock on their feeding grounds at C; and the mature and ripening fish move from the feeding 

grounds back to the spawning grounds at A. Then as spents, they return to the feeding grounds. The migration 

pattern is believed to be related to that of currents. The young stages drift with the current to the nursery ground; 

the spawning migrate from B to C against the current, and the spents return to the feeding ground with the 

current. The really spectacular migrations of mature adult fish are for spawning and for feeding. They breed in  

one area, but grow up and feed in another .Examples are provided by the cod of the Arcto-Norwegian stock and 

the European eel. In summer months the Arcto-Norwegian cod feed in area roughly bounded by spitsbergen, 

Bear Island,Novaya Zemlya, and the Murman coast. In October and November the older fish start to move 

southwards after the arctic night has set in and four months later, in February and March, The European eel is 

believed to spawn somewhere between the Bermudas and the Bahamas in an area corresponding more or less 

with the Sargasso sea, where the water is warm and of relatively high salinity. The larval eels, known as 
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leptocephali, are carried towards the European coastline where as elvers, now about two and half years old, they 

enter rivers. Ten or more years later, as fully grown eels, they leave freshwater and are thought to make the 

return journey of over 3,000 miles back to their birthplace, to spawn and to die. 

Here we take a competition model, in which two competitive population species diffuse between circular 

patches in a given area. The system of non-linear partial differential equations for the above case is 
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Here    
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=Density of first species population 
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= Density of second species population 
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=Intrinsic birth rate of first species population 

ii
bb

21
,

=Intraspecific interaction coefficients  
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Each of the above quantity is pertaining to the 
th

i  patch, (i=1,2) 

              

          Equilibrium points of the equations (1) are  
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We take small perturbations 
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 and 
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near the non zero equilibrium point i.e. 
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Then the system of equations (1) becomes                                                                             
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 The initial conditions are taken as  
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where 
i

G
1

 and 
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G
2

 are suitable functions. This gives initial population distribution close to the innermost 

boundary.         

Interface conditions at 
1
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where 
1

r and 
2

r  denote region-I and region-II respectively. These conditions ensure no disappearance, no return 

and no stop of the animal species at the barriers.        

Boundary conditions associated with the system of equations are,  
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This implies that the innermost and outermost boundaries are sealed or prohibited for the animals to cross over.                

  

Solution:  
To solve this model, we apply the Finite Element Method in radial direction. Comparing system of equations (3) 

with Euler -Lagrange’s equation, we get  
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We take linear shape function as  
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Using these values, we get  
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Substituting above values in equations (8), we get 
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where  
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Now differentiating I with respect to 
111

u  and 
221

u and putting 

0

221111











u

I

u

I ,  

We get the system of  differential equations to solve  the above system of we use Fourier series 

we get 
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 where all the summations are taken from 1n  to n .  

However, assuming fast convergence of the series on the right we terminate the series after three terms. 

Substituting these values in equations and comparing constant terms and coefficients of cos  and sin  ,we 

arrive at 



Diffusion Of Interacting Marine Species In Ocean 

www.ijesi.org                                                              4 | Page 

 
301610143013101120152012
''' aPaPaPaPaPaP        

 
302610243023102120252022
''' aPaPaPaPaPaP       

    '

215

2

15212

2

12 nn
aQnPaQnP       

nnn
aQnPaQnPaQnP

114

2

14313

2

13111

2

11
'  

n
aQnP

316

2

16
'    

    '

225

2

25222

2

22 nn
aQnPaQnP       

nnn
aQnPaQnPaQnP

124

2

24323

2

23121

2

21
'  

n
aQnP

326

2

26
'  

    '

215

2

15212

2

12 nn
bQnPbQnP       

nnn
bQnPbQnPbQnP

114

2

14313

2

13111

2

11
'  

n
bQnP

316

2

16
'  

    '

225

2

25222

2

22 nn
bQnPbQnP       

nnn
bQnPbQnPbQnP

124

2

24323

2

23121

2

21
'  

n
bQnP

326

2

26
'  

Since on inner boundary 

     

   ,,

,,

2121

1111





Gru

Gru



                   

Parabolic variation of perturbation along the circular boundary has been taken in the form 
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By Fourier series, we get 
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Now substituting these values and taking Laplace transform of  above  system of equations ,we get                                                                                                
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Numerical Computation:  
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II. DISCUSSION 

Graphs are plotted between   and population density of species for constant time. Graphs show that 

density of both species decreases with    at any time in the first half part after that density of both species 

increases with    at any time in the second half part in the first and second patch. Graphs also show that the 

density of both increases with time in the first and second patch. 
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