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ABSTRACT : In this paper some fundamental theorems , operators differential geometry – with operator 

Riemannian geometry to pervious of differentiable manifolds which are used in an essential way in basic 

concepts of Spectrum of Discrete , bounded Riemannian geometry, we study the defections, examples of the 

problem of differentially projection mapping parameterization system on dimensional manifolds .  
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I. Introduction 
Differential forms and the exterior derivative provide one piece of analysis on manifolds which, as we have seen 

, links in with global topological questions . There is much more on can do when on introduces a Riemannian 

metric. Since the whole subject of Riemannian geometry is a huge to the use of differential forms. The study of 

harmonic from and of geodesics in particular, we ignore completely hare questions related to curvature. The 

spectrum does not in general determine the geometry of a manifold Nevertheless earthiness, some geometric 

information can be extracted from the spectrum. In what follows, we define a spectral invariant to be anything 

that is completely determined by the spectrum .A Riemannian manifold is a pair ).( gM  consisting of a 

smooth manifold M  and a metric g on the tangent bundle, i.e. a smooth symmetric positive definite tensor field 

on M  . The tensor g is called a Riemannian metric on M  

 

II. Basic Notions On Differential Geometry 
2.1 Basic on topological Manifold 

Definition 2.1.1 Topological Manifold  

A topological manifold M of dimension n , is a topological space with the following properties:   

(a) M Is a Hausdorff space . For ever pair of points Mgp , , there are disjoint open subsets MVU , such that 

Up  and Vg  .  

(b) M Is second countable. There exists accountable basis for the topology of M . (c) M is locally Euclidean of 

dimension n . Every point of M has a neighborhood that is homeomorphism to an open subset of n
R . 

Definition 2.1.3 

A topological space M is called an m-dimensional topological manifold with boundary MM  if the 

following conditions : (i) M is Hausdorff space.(ii) for any point Mp  there exists a neighborhood U of p

which is homeomorphism to an open subset m
HV  .(iii) M has a countable basis of open sets , can be 

rephrased as follows any point Up  is contained in neighborhood U to mm
HD  the set M is a locally 

homeomorphism to m
R  or m

H the boundary MM  is subset of M which consists of points p . 

Definition 2.1.4 

Let X be a set a topology U for X is collection of X satisfying : (i)  and X are in U (ii) the intersection 

of two members of U is in U .(iii) the union of any number of members U is in U . The set X  with U is 

called a topological space the members uU   are called the open sets . let X be a topological space a subset 

XN  with Nx  is called  a neighborhood of x if there is an open set U with NUx  , for example 

if X a metric space then the closed ball )( xD


and the open ball )( xD


are neighborhoods of x a subset C is 

said to closed if CX \ is open  

Definition 2.1.5 

A function YXf : between two topological spaces is said to be continuous if for every open set U of Y

the pre-image )(
1

Uf
 is open in X . 
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Definition  2.1.6 

Let X and Y be topological spaces we say that X and Y are homeomorphic if there exist continuous 

function  such that 
y

idgf  and 
X

idfg  we write YX  and say that f and g are homeomorphisms 

between X and Y , by the definition a function YXf : is a homeomorphisms if and only if .(i) f  is a 

bijective .(ii) f is continuous  (iii) 1
f is also continuous.   

Definition 2.1.7 Coordinate Charts  

 A coordinate chart or just a chart on a topological n manifold M   is a pair ),( U , Where U is an open subset 

of M and UU
~

:   is a homeomorphism from U to an open subset n
RUU  )(

~
 .  

Examples 2.1.8 Topological Manifolds] Spheres  

 Let n
S denote the (unit) n sphere, which is the set of unit vectors in 1n

R : }1:{
1




xRxS
nn

 with the 

subspace topology, n
S is a topological n manifold.    

Definition 2.1.9   Projective spaces  

The n dimensional real (complex) projective space, denoted by ))()( CPorRP
nn

, is defined as the set of 1-

dimensional linear subspace of )
11  nn

CorR , )()( CPorRP
nn

is a topological manifold.  

Definition 2.1.10  

For any positive integer n , the n torus is the product space )...(
11

SST
n

 .It is an n dimensional 

topological manifold. (The   2-torus is usually called simply the torus).  

Definition2.1.11 Boundary of a manifold  

The boundary of a line segment is the two end points; the boundary of a disc is a circle. In general the boundary 

of an n manifold is a manifold of dimension )1( n , we denote the boundary of a manifold M as M . The 

boundary of boundary is always empty,   M  
Lemma 2.1.12 
(i)Every topological manifold has a countable basis of Compact coordinate balls.  ( ii ) Every topological 

manifold is locally compact.  

Definitions 2.1.13 [ Transition Map] 

Let M be a topological space n -manifold. If ),(),,(  VU are two charts such that  VU , the composite map. 

(1) )()(:
1

VUVU 


   

Is called the transition map from  to . 

Definition 2.1.14   [A smooth Atlas] 

An atlas A is called a smooth atlas if any two charts in A are smoothly compatible with each other.  A smooth 

atlas A on a topological manifold M is maximal if it is not contained in any strictly larger smooth atlas. (This 

just means that any chart that is smoothly compatible with every chart in A is already in A.  

Definition 2.1.15 [ A smooth Structure ] 

A smooth structure on a topological manifold M is maximal smooth atlas. (Smooth structure are also called 

differentiable structure or 
C structure by some authors).  

Definition 2.1.16   [ A smooth Manifold ] 

A smooth manifold is a pair ,( M A), where M is a topological manifold and A is smooth structure on M . When 

the smooth structure is understood, we omit mention of it and just say M is a smooth manifold.   

Definition 2.1.17 

Let M be a topological manifold:  (i)Every smooth atlases for M is contained in a unique maximal smooth atlas. 

(ii) Two smooth atlases for M determine the same maximal smooth atlas if and only if their union is smooth 

atlas. 

Definition 2.1.18 

Every smooth manifold has a countable basis of pre-compact smooth coordinate balls. For example the General 

Linear Group The general linear group ),( RnGL is the set of invertible nn  -matrices with real entries. It is a 

smooth 2
n -dimensional manifold because it is an open subset of the 2

n - dimensional vector space ),( RnM , 

namely the set where the (continuous) determinant function is nonzero.  

Definition 2.1.19[ Tangent Vectors on A manifold ] 

Let M be a smooth manifold and let p be a point of M  A linear map RMCX 


)(: is called a derivation at p if 

it satisfies: 

(2)                     XfpgXgpffgX )()()(   

Forall )(, MCgf


 . The set of all derivation of )( MC
 at p is vector space called the tangent space to M at p , 

and is denoted by [ MT
p

]. An element of MT
p

is called a tangent vector at p . 



Operator’s Differentialgeometry With Riemannian Manifolds  

www.ijesi.org                                                          30 | Page 

Lemma 2.1.20   [ Properties of Tangent Vectors]  

Let M be a smooth manifold, and suppose Mp  and MTX
p

 . If f  is a const   and function, then 0Xf . If  

(3)                   0)()(  pgpf , then 0)( fpX .  

Definition2.1.22 [Tangent Vectors to Smooth Curves ] 

If   is a smooth curve (a continuous map MJ : ,where  RJ  is an interval) in a smooth manifold M , we 

define the tangent vector to  at Jt 


to be the vector . 

(4)                           MT
dt

d
t

tt )(
|)(


 

 












 

where 


tdt
d | is the  standard coordinate basis for RT

t


. Other common notations for the tangent vector to   are 









 
)(,)(


t

dt

d
t


 and













tt

dt

d
|


. This tangent vector acts on functions by : 

(5)               )(
)(

||)(







t
dt

fd
f

dt

d
f

dt

d
ft

tt


 











  

Lemma 2.1.23  

Let M be a smooth manifold and Mp  .Every  MTX
p

 is the tangent vector to some smooth curve in M .        

Definition 2.1.24    [ Lie Groups ] 

A Lie group is a smooth manifold G that is also a group in the algebraic sense, with the property that the 

multiplication map GGGm : and inversion map GGm : , given by 1
)(,),(


 ggihghgm , are both 

smooth. If G is a smooth manifold with group structure such that the map GGG  given by  1
),(


 ghhg is 

smooth, then G is a Lie group. Each of the following manifolds is a lie group with indicated group operation. 

The general linear group ),( RnGL is the set of invertible nn  matrices with real entries. It is a group under 

matrix multiplication, and it is an open sub-manifold of the vector space ),( RnM , multiplication is smooth 

because the matrix entries of A and B . Inversion is smooth because Cramer’s rule expresses the entries of 1
A as 

rational functions of the entries of A .  The n torus )...(
11

SST
n

 is an n dimensional a Belgian group.      

Definition 2.1.25   [ Generalized Tensor is Riemannian] 

If an m-dimensional smooth manifold M is given a smooth every no degenerate symmetric covariant tensor 

field of rank-2 , G then M  is called a generalized tensor or metric tensor or metric of M  . If G  is positive 

definite then M  is called Riemannian manifold for a generalized Riemannian manifold ji

ji
dudugGM ,

specifies an inner product on the tangent space )( MT
p

 at every point Mp   for any )(, MTYX
p

 .  

(6)                           ji

ij
YXpgYXGYX  ..  

When G  is positive definite, it is meaningful to define the length of a tangent vector and the angle between two 

tangent vectors at the some point Ji

ij
XXgX  . Thus a Riemannian manifold is a differentiable manifold 

which has a positive definite inner product on the tangent space at every point. The inner product is required to 

smooth YX ,  are smooth tangent vector fields then YX ,  is a smooth on M  

Definition 2.1.26  [ Smooth Parameterize Curve ] 
ji

ji
dudugdS 

2 is independent of the choice of the local coordinate system i
u  and usually called the metric form 

or Riemannian metric )( dS  is precisely the length of an infinitesimal tangent vector and is called the element of 

are length . Suppose a  tuuC
ii

 and
10

ttt   is a continuous and piecewise smooth parameterized curve on

M  ,then the are length of C is defined to be . 

(7)                                 
















  dt
dtdt

dudu
gS

t

t

ji

ij

1

0

 

Remark 2.1.27 

Exist a smooth is nonzero everywhere. The existence of a Riemannian metric on a smooth manifold is an 

extraordinary result. In general there may not exist a non-positive. In the context of fiber bundles , the existence 

of a Riemannian metric on M implies the existence of a positive definite smooth of bundle of symmetric 

covariant tensor of order 2-on M, However for arbitrary vector bundles there may not exist a smooth which is 

nonzero everywhere. 

Theorem 2.1.28 

Suppose M  is an m-dimensional generalized Riemannian manifold then there exists a unique tensor – Free and 

metric compatible connection on M  , called the ( Levi-civet connecting of M  )  Riemannian connection of M  

Proof: 
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Suppose D  is a torsion-free and metric – compatible connection on M , denote the connection matrix of D  under 

the local coordinates i
U by  j

i
WW  where kj

ik

j

i
duW  .Then we have

ki

k

jkj

j

iij
gWgWdg  , and j

kj

j

ik
 Denote 

that  l

ilkik

j

kjij

j

ik
WgWg  , . Then its follows from that. 

(8)                                j

ikjjikk

ij

u

g





 

j

ikjjik
 is cycling the indices in  we get j

ikjjikj

ik

u

g





and j

ikjjiki

ik

u

g





 .And calculating we then obtain . 

(9)




































k

jk

i

jk

j

ik

ji

u

g

u

g

u

g

2

1





































l

ij

i

jl

j

ilkl

ij

k

u

g

u

g

u

g
g

2

1
 

The equation is ( Levi-civet connecting of M  ) or ( Riemannian connection of M ) 

Definition  2.1.29  [ Smooth Curve in M ] 

Let M be a Riemannian manifold and   M1,0: a smooth map i,e a smooth curve in M  . The length of 

curve is )(L and 















dcz

baz
ZF )( With dcba ,,, and 0 bcad , then

2
)(

)(
dcz

dz
bcadFdz


  and 

. 

(10)






























g
y

dydx

ybcad

dcz

dcz

dydx
bcadFg

2

22

22

2

2
2

2

)()(

)(

 

 

So these Movies transformation are isometrics of Riemannian metric on the upper half-plan. 

 

2.3 :  The Spectral Geometry of operators of Dirac and Laplace Type 

We have also given in each a few additional references to relevant. The constraints of space have of necessity 

forced us to omit many more important references that it was possible to include and we a apologize in a dance 

for that. We a the following notational conventions , let ),( gM ( be compact Riemannian manifold of dim. M  

with boundary M .Let Greek indices   ,  range from mto1  , and index a local system of coordinates 

 m
xxx ...,,.........

1
  on the interior of M  expand the metric in the form 


dxdxgdS 

2  were  


 xx
g  ,  and 

where we  adopt the Einstein convention of summing over repeated indices we let 
g be the inverse matrix the 

Riemannian measure is given by  m
dxdxdx ...,,.........

1
 for  


gg det let   be the”levi-Civita” connection. We 

expand


 x
xx




.
,

 . Where  


 are the Rm , are may then be given by.    YXXYYX
YXR

,
, 

And given by. 

(11)                           WZYXRgWZYXR ,),,(,,,   

We shall let Latin indices ji , range from 1 to m and index a local orthonormal frame  
m

ee ...,,.........
1

for the 

components of the curvature tensor scalar curvature  . Are then given by setting 
ikkijikkjiij

RandR   . 

We shall often have an auxiliary vector bundle set V and an auxiliary given on V , we use this connection and 

the “ Levi-Civita” connection to covariant differentiation , let dy be the measure of the induced metric on 

boundary M , we choose a local orthonormal from near the boundary M  , so that  
m

e  is the inward unit normal 

. We let indices a,b range from 1 to m-1 and index the induced local frame    
11

...,,.........
m

ee for the tangent 

bundle f the boundary , let   
megba

eebL
a

,
,

 denote the second fundamental form . we some over indices with the 

implicit range indicated . Thus the geodesic curvature
g

K is given by 
aag

LK   . We shall let denote multiple 

tangential covariant differentiation with respect to the “Levi-Civita” connection the boundary the difference 

between and being of course measured by the fundamental form. 

 

Proposition 2.3.1[ Manifold admits a Riemannian Metric] 

Any manifold a demits a Riemannian metric 

Proof : 

Take a converging by coordinate neighborhoods and a partition of unit subordinate to covering on each open set


U  we have a metric 

i
i

dxg
2

  . In the local coordinates, define
)( i

i
i
gg


  this sum is well-defined 
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because the support of 
i

 . Are locally finite. Since 0
i

  at each point every term in the sum is positive 

definite or zero, but at least one is positive definite so that sum is positive definite. 
 

Proposition 2.3.2[ The Geodesic Flow] 

Consider any manifold M and its cotangent bundle )(
*

MT , with projection to the base MMTp )(:
* , let 

X  be tangent vector to )(
*

MT at the point MT
a

*

 then )()(
*

MTXD
p

  so that ))(()( xDX
pa

 

defines a conicala conical 1-form   on )(
*

MT in coordinates 
i

i
dyyyx ),( the projection p is

xyxp ),(  so if
i

i

i

i

y
b

x
aX









   so if given take the exterior derivative

ii
dydxdw    

which is the canonical 2-from on the cotangent bundle it is non-degenerate, so that the map )( wiX  from 

the tangent bundle of )(
*

MT to its contingent bundle is isomorphism. Now suppose f is smooth function an

)(
*

MT its derivative is a 1-form df .Because of the isomorphism a above there is a unique vector field X  on 

)(
*

MT such that )( widf   from the g another function with vector field Y  , then . 

(12)         
g

wiwi

Y
XYXiXiiYdftY )()()(   

On a Riemannian manifold we shall see next there is natural function on )(
*

MT . In fact a metric defines an 

inner on *
T  as well as on T  for the map ),(  XgX  defines an isomorphism form T  to *

T then

ki
j k

llkjji
gdxgdxgg 








   which means that ki

kj
gdxdxg ),(

*  where ki
g denotes the matrix to

ki
g  we 

consider the function )(
*

MT defined by ),()(
*

aaa
gH     . 

2.4 Maxima and Minima Lecture 

Example 2.4.1 

A Texas based company called (Hamilton’swares) sells baseball bats at a fixed price c . A field researcher has 

calculated that the profit the company makes selling the bats at the price c is 














 cccccp 1150

2

51

5

1

2000

1
)(

234 at what price should the company sell their bats to make the most money. 

Intuitively what would we have to do solve this problem. We wish to know at what point c is this function )(cP

is maximized. we do not have many tools as moment to solve this problem so let’s try to graph the function and 

guess at where the value should  be.  

Definition 2.4.2 

Let f be function defined on an interval I containing c we say that f has an absolute maximum ( or a global 

maximum ) value on I at c )()( cfxf  for all x contained in I . Similarly, we say that f has an absolute 

minimum ( or a global minimum ) value on I at c if )()( cfxf  for all x contained in I . Those points together 

are known as absolute global extreme.  

Example 2.4.3 

1)(
2
 xxf for   ,x remember this notation means for x living in the interval from negative infinity to 

infinity . This can also be written as Rx  or in words as for all real x ,this function has an absolute minimum of  

at the point 0x but no absolute maximum on the interval . 

Example 2.4.4 

1)(
2
 xxf for  2,2x remember closed brackets means we include the endpoints in our interval this function 

has an absolute minimum of I at the point 0x and a absolute maximum of 51)2()2(
2

f at the points

2x  and 2x . 

Example 2.4.5 

1)(
2
 xxf for  2,0x remember open brackets means we omit the endpoint in our interval . 

Example 2.4.6 
3

)( xxf  for   ,x , this function has no absolute minimum and no absolute maximum . 

Definition 2.4.7[ Extreme value theorem] 

A function have an a absolute maximum and minimum these examples seen to suggest that if we have a closed 

interval then we’re in business. 

Example 2.4.8 

Consider the function .from the graph, it’s clear that this function has no absolute minimum or absolute 

maximum but )( xf  is defined on all of  2,0 the problem with this example is that the function is not 

continuous. 
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(13)                 
















214

2,1,05.1

10

)(

xifx

xif

xifx

xf  

 

Theorem 2.4.9[Extreme value ] 

Let )( xf be a continuous function defined on a close interval, then )( xf has an absolute maximum and an 

absolute minimum on that interval . 

[Notice]:  that this says nothing about uniqueness. Remember the example 1)(
2
 xxf for  2,2x has two 

points where the absolute maximum was obtained. Also note that functions that are not continuous and defined 

on a closed interval can still have extreme.  

Example 2.4.10 

Consider the following function on  1,1 as function )( xf , this function is not continuous at 0 however it has a 

global minimum of 0 of -3 because at all non-zero points this  

function is sturdily positive.  

(14)  











03

0
)(

xif

xifx
xf  

Definition 2.4.11 

Let I be an open interval on which a function f is defined and suppose that Ic  .We say that c is a local 

maximum value of f if )()( cfxf  for all x contained in some open interval of I .Similarly we say that c is a 

local minimum value of f if )()( cfxf  for all x contained in some open interval I . These points together are 

known as local extreme. 

[Note] : Your textbook uses any arbitrary interval, but requires  c to be an interior point. 

[Note] : Global extreme of a function that occur on an open interval contained in our domain are also local 

extreme. 

Theorem 2.4.12 [ Fermat’s or local extreme ] 

If a function )( xf has a local minimum or maximum at the point c and )(cf  exists, then 0)(  cf  

Example 2.4.13 

We look at xxf )( . Notice that this function is not differentiable 0x but since )0(0)( fxxf   we see 

that it has a local minimum at 0 ( and in fact this is a global minimum ). 

Definition 2.4.14 

A critical point is a point c in the domain of f where 0)(  cf or )(cf  fails to exist . In fact all critical points 

are candidates for extreme but it is not true that all critical points are extreme.  

Example 2.4.15 

Consider the function 3
)( xxf  .We saw before that this function has no maximum or minimum. However 

2
3)( xxf  and 0)0(3)0(

2
f so the point 0x is a critical point of f that is not an extreme.  

 

2.5 : [ Algorithm for finding global minima and maxima ] 

Let f be a continuous function on a closed interval  ba , so that our algorithm satisfies the conditions the 

conditions of the extreme value theorem:(i) Find all the critical points of  ba , , that is the points  bax , where 

)( xf  is not defined or where 0)(  xf ( usually done by setting the numerator and denominator to zero ) call 

these points 
n

xxx ,....,,
21

.(ii) Evaluate )(),(),(),.....,(
1

bfafxfxf
n

that is evaluate the function at all the critical 

points found from the previous step and the two end point values . (iii) The largest and the smallest values found 

in the previous step are the global minimum and global maximum values.  

Example 2.5.1 

Compute the absolute maximum and minimum of   2,1243  onxx . 

Solution 

Our function is continuous ( and in fact differentiable ) everywhere . Hence we 46)(  xxf setting 0)(  xf

and solving yields xxxxf  3/26446)(0 . Now we evaluate f at 1,3/2 x and 2 ( that is the 

critical points and the end points ) we get that . 

(15)














































02)2(4)2(3)2(,92)1(4)1(3)1(,

3

2
4

3

2
4

3

2
3

3

2 22

2

fff  

From this , we see that the absolute maximum is 9 obtained at 1x and the absolute minimum is  3/2 obtained 

at  3/2x . 
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Example 2.5.2 

Compute the critical points of 3/2
5)( xxf  . 

Solution  

We compute the derivative 3

1

3

10
)(



 xxf ,Now we check when the derivative is 0 and when it is undefined This 

function is never 0 but happens to be undefined at 0 which is a point in our in domain . Hence the critical points 

are just 0x . 

 

2.5:  The Geometric of Operators of Laplace and Dirac Type  

In this subsection we shall establish basic definitions discuss operator of Laplace and of Dirac type introduce the 

De-Ream complex and discuss the Boehner Laplacian and the weitzenbochformula. Let D  be a second of 

smooth sections  vC
  of a vector bundle v  over space M , expand  bxaxxaD

v

v








 where 

coefficient  baa
v

,,
  are smooth endomorphism’s of v, we suppress the fiber indices . We say that D is an 

operator of Laplace type if 2
A ,on  vC

 is said to be an operator of Dirac type if 
2

A is an operator of Laplace 

operator of Dirac type if and only if the endomorphism’s v
 satisfy the Clifford commutation relations 

)(2 idg
vvv 

  . Let A be an operator of Dirac type and let v

v
dx  be a smooth 1-form on M we let 

  v

v
v  define a Clifford module structure on V  . This is independent of the particular coordinate system 

chosen. We can always choose a fiber metric on so that   is skew adjoin. We can then construct a unitary 

connection  on V  so that 0  such that a connection is called compatible the endomorphism if  is 

compatible we expand
A

v

x
v

A  


,  
A

 is tonsorial and does not depend on the particular coordinate system 

chosen it does of course depend on the particular compatible connection chosen. 

Definition 2.5.1 [ The De-Rahm Complex ] 

The prototypical example is given by the exterior algebra, let  MC
p


  be the space of smooth p forms. Let 

   MCMCd
pp 1

:


 be exterior differentiation if 


is cotangent vector, Let wwext   :)(  denote 

exterior multiplication and let )(int  be the Dual , Interior multiplication, )int()()(   extv define module on 

exterior algebra  M . Since  
v

x

v
dxvd


  . d is an operator of “ Direct type” the a associated Laplacian

  m

M

p

mmm
d  ...........

02

 decomposes as the “Direct sum” of operators of Laplace type p

m
 on the 

space of smooth p forms  MC
p


  on has  

v

v

M
xggxg 

 



10 it is possible to write the p-form valued 

Laplacian in an invariant form . Extend the “ Levi-Civita” conduction to act on tensors of all types .Let 

vwg
v

M
w 


,

~
 define Buchner or reduced Laplacian , let R given the associated action of curvature tensor . 

The “Weitzenbock” formula terms of the“Buchner Laplacian” in the form    



 Rdxdx

MM

2

1~
  

This formalism can be applied more generally.  

Lemma 2.5.2[ Spinner Bundle]  

Let D be an operator of Laplace type on a Riemannian manifold, there exists a unique connection  on V  and 

there exists a unique endomorphism E  of V  , so that  ED
ii
 if we express D  locally in the form 

 bxaxxgD 






 then the connection 1-form w of  and the endomorphism E are given by . 

(16)            









 














wwwwxgbEandidgagw
E

E

2

1
 

Let V  be equipped with an auxiliary fiber metric, then D  is self-adjoin if and only if  is unitary and E  is self-

adjoin we note if D is the Spinner bundle and the “Lichnerowicz formula” with our sign convention that  

)(
4

1
idJE   where J is the scalar curvature. 

Definition 3.4.3   Heat Trace Asymptotic for closed manifold  

Throughout this section we shall assume that D  is an operator of Laplace type on a closed Riemannian 

manifold ),( gM . We shall discuss the 2
L  - spectral resolution if D  is self-adjoin , define the heat equation 

introduce the heat trace and the heat trace asymptotic present the leading terms in the heat trace . Asymptotic 

references for the material of this section and other references will be cited as needed , we suppose that D  is 

self-adjoin there is then a complete spectral resolution of D  on  vL
2 . This means that we can find a complete 

orthonormal basis  
n

  for  vL
2  where they

n
 are a smooth sections to V  which satisfy the equation

nnn
D   . 
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2.6 :  Inverse Spectral Problems in Riemannian geometry 

In al-arguably one the simplest inverse problem in pure mathematics “ can on hear the shape of drum “ 

mathematically the question is formulated as follows , let   be a simply connected plane domain ( The 

drumhead bounded by a smooth curve  ) , and consider the wave equation on  with . Dirichlet boundary 

condition on   - ( the drumhead is clamped at boundary )  

      intxUintxU
C

txu
tt

0,,,
1

,
2



 
The function  ),( txU  is the displacement of drumhead as vibrates at position x  at time t  , looking for solutions 

of the form    xvetxU
twi

Re,   (normal modes) leads to an eigenvalue problem for the Dirichlet Laplacian on 

Where  22
/ cw  , we write the infinite sequins of Dirichlet eigenvalues for this problem as   




1nn
  or 

simply   


1nn
   , if the choice of domain  is clear in context , Kans question means the following is it possible 

to distinguish “ drums “  
1

 and 
2

  with distinct ( modulo isometrics ) bounding curves
1

 and
2

 simply by ( 

hearing ) all of the eigenvalues of Dirichlet Laplacian some surprising and interesting results are obtained by 

considering the heat equation on  with 

Dirichlet boundary conditions, which given rise to the same boundary value  

problem as before the heat equation is : 

(17)                    

   

 

   













xfxU

ontxU

intxUtxU
t

0,

0,

,,

  

Where  txU ,  is the temperature at point x and time t , and f(x) is the initial temperature distribution. This 

evolution equation is formal solution.      xfetxU
t 

, . Where the operator t
e  can be calculated using the 

spectral resolution of   . Indeed if  x
j

  is the normalized Eigen function of the boundary value problem with 

eigenvalue 
j

  the operator t
e has integral Kernel ),,( yxtk the heat Kernelgiven by . 

(18)                  yxeyxtk
j

t












1

),,(  

The trace of ),,( yxtk  is actually a spectral in variant by    ( we can compute ). 










1

),,(
j

t
j

eyxtk


 

[Not] that the function determines the spectrum  


1nn
 , to analyze the geometric content of spectrum, one 

calculates the by completely different method one constructs the heat kernel by perturbation from the explicit 

heat kernel for the plane, and then on computes the trace explicitly. It turns out that the trace has a small-t 

asymptotic expansion. 

(19)       ..........
4

1
,,

1210




taaa
t

dxtxxk


 

Where    lengthaareaa 
10

,  , Al though a strict derivation is a bit involved which shows why  
0

a and
1

a  

should given the area of   and length of   the heat kernel in the plan is .    tyx
t

tyxk 


4/exp
4

1
,,

2

0
  , we 

expect particle that for small times    txxktxxK ,,,,
0

  ( a Brownian particle starting out the interior doesn’t the 

boundary for a time of order t  ). 

(20)             


are
t

dxtxxkdxtxxK
4

1
,,,,

0
 

For times of order t , boundary effects become important we can approximate the heat kennel near the 

boundary locally by ( method images ) locally the boundary looks the line
211

0 xxtheinx   plane , letting 

*
xx   be ,      

*

02
,,,,,, tyxktxxktxxK  vanishes 0

1
x hence  

t

e
txxK

t





4

1
,,

/2
2




  where  .  Is the distance 

from x  to the boundary , writing the volume integral for the additional term as an integral over the boundary 

curve and distance from the boundary dsde
t

t








/2

0 4

1




   we have. 

(21)  
   



















 tt

length

t

area
dxtxxK

1

2

1

44
,,






 

It follows that the is spectral set of a given (drum )  contains only drums with the same area and perimeter here 

we will briefly discuss the generalization of kais problem and some of the known results. A Riemannian 
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manifold of dimension n is a smooth n-dimensional manifold M . Equipped with a Riemannian metric g which 

defines the length of tangent vectors and determines distances and angles on the manifold . The metric also 

determines the Riemann curvature tensor of M  . In two dimensions , the Riemannian curvature tensor is in turn 

determined by the scalar curvature, and in three dimensions it is completely determined by the Ricci curvature 

tensor. If M  is compact the associated Laplacian has infinite set of discrete eigenvalues   1


nn
 what is the 

geometric content of the spectrum for a compact Riemannian manifold. Constructs a pair 16-dimensional tori 

with with the same spectrum. The torii nn
TandT

21
are quotients of n

R by lattices
21

 and of translations of  n
R . 

Since the tow tori are isometric of and only if their lattices are congruent, it suffices to construct a pair of non-

congruent 16-dimensional lattices whose a associated tori have the same spectrum .To understand the analysis 

involved in Milnor’s construction consider the following simple “ trace formula” for a torus  /
nn

RT   which 

computes the trace of the heat kernel on a torus in terms of lengths of the lattice vectors to the heat kernel on the 

torus is given by the formula.    tywxktxxK
w

,,,,
0

 



 

 







w

tw

n

e
t

Tvol
dxtxxK

4/

0

2

4
,,


 

Milnor noted that there exist non-congruent lattices in 1-dim. With the same set of “ length “  ww :  first 

discovered by the trace of the heat kernel determines the spectrum and the heat trace is in turn determined by the 

lengths, it follows that the corresponding non-isometric tori have the same spectrum.                                                                                            

Example 2.6.1 [ Riemannian Manifold with Same Spectrum  ] 
Riemannian manifold with the same spectrum letter constructed continuous families of is spectral manifold in 

sufficiently high dimension 5n   two major questions remained: 

(i) can one show that the is spectral set of given manifold at finite in low dimension .                                                                                                                 

(ii) can on find counterexamples for Kicks original problem , can one construct is spectral , non-congruent 

planar  

 

Definition 2.6.2 [ Some Positive Results ] 

In proved one of the first major positive results on is spectral sets of surfaces and planar domains informally. A 

sequence of planar domains 
j

  converges in 
C since to a limiting non-degenerate set compact surfaces 

j
S

converges in 
C sense to limiting non-degenerate surface S , converge in 

C sense to a positive definite metric on

S  

Theorem 2.6.3 

(i) Let 
j

 be a sequence of is spectral planar domains there is a subsequence which converges in 
C sense to no 

degenerate limiting surface.                               

(ii) Let 
j

S be a sequence of is spectral compact surfaces there is a subsequence of the 
j

S converging in 
C sense 

to a non-degenerate surface S .                                  

Theorem 2.6.4 

Suppose  
j

M is a sequence if is spectral manifold such that either : (i) All of the 
j

M - have negative sectional 

curvatures .(ii)  All of the 
j

M -have Ricci curvatures bounded below .Then there are finitely many 

diffoemorphism types and there is a subsequence which convergent in 
C to a nodegenerate limiting manifold .  

(22)               















00

1

,....,)( t
dt

d
t

dt

d
t

dt

d
n


 

we many k bout smooth curves that is curves with all continuous higher derivatives cons the level surface

  cxxxf
n
,...,,

21 of a differentiable function f where
i

x to  thi  coordinate the gradient vector of f at 

point )(),....,(),(
21

PxPxPxP
n

 is 




















n
x

f

x

f
f ,.....,

1

is given a vector ),...,(
1 n

uuu  the direction 

derivative n

nu
u

x

f
u

x

f
uffD









 ...

1

1
, the point P on level surface  n

xxxf ,...,,
21  the tangent is 

given by equation. 0)()()(....))(()(
11

1










PxxP

x

f
PxxP

x

f nn

n
     

For the geometric views the tangent space shout consist of all tangent to smooth curves the point P , assume 

that is curve through 
0

tt  is the level surface.   cxxxf
n
,...,,

21 ,   ctttf
n

)(),....,(),(
21

 by taking 

derivatives on both   0))()(....)((
01










tP

x

f
tP

x

f n

n
 and so the tangent line of  is really normal 

orthogonal to f , where  runs over all possible curves on the level surface through the point P . The surface 
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M be a 
C manifold of dimension n with 1k the most intuitive to define tangent vectors is to use curves ,

Mp  be any point on M and let   M  ,: be a 1
C curve passing through p that is with pM )(

unfortunately if M is not embedded in any N
R the derivative )(M  does not make sense ,however for any 

chart  ,U at p the map    at a 1
C curve in n

R and tangent vector   )( Mvv  is will defined the 

trouble is that different curves the same v given a smooth mapping MNf : we can define how tangent 

vectors in NT
p

are mapped to tangent vectors in MT
q

with  ,U choose charts )( pfq  for Np  and

 ,V for Mq  we define the tangent map or flash-forward of f as a given tangent vector. 

(23)                         NTX
pp

  and      ffMTfd
p


**

,:  

A tangent vector at a point p in a manifold M is a derivation at p , just as for n
R the tangent at point p form 

a vector space )( MT
p

called the tangent space of M at p , we also write )( MT
p

a differential of map 

MNf : be a 
C map between two manifolds at each point Np  the map F induce a linear map of 

tangent space called its differential p , NTNTF
pFp )(*

:  as follows it NTX
pp

 then )(
* p

XF is the 

tangent vector in MT
pF )(

defined . 

(24)      )(,)(
*

MCfRFfXfXF
pp


   

The tangent vectors given any 
C - manifold M of dimension n with 1k for any Mp  ,tangent vector to

M at p is any equivalence class of 1
C - curves through p on M modulo the equivalence relation defined in 

the set of all tangent vectors at p is denoted by MT
p

we will show that MT
p

is a vector space of dimension n of 

M . The tangent space MT
p

is defined as the vector space spanned by the tangents at p to all curves passing 

through point p in the manifold M , and the cotangent MT
p

*

of a manifold at Mp   is defined as the dual 

vector space to the tangent space MT
p

, we take the basis vectors 















ii

x
E for MT

p
and we write the basis 

vectors MT
p

*

as the differential line elements ii
dxe  thus the inner product is given by. 

(25)                       j

i

i
dxx  ,/  

Theorem 2.6.5[Bounded Harmonic Function ] 

Suppose that   is a bounded, connected open set in 
n

R  and     CCU
2 is harmonic in   then.  

UU


 maxmax and UU


 minmin  

Proof : 

Since U is continuous and   is compact , U  attain its global maximum and minimum on  , ifU  attains a 

maximum or minimum value at interior  point then U is constant by otherwise both extreme  values are attained 

in the boundary .In either  cases the result follows  let given a second of this theorem that does not depend on 

the mean value property .Instated we us argument based on the non-positivity of the second derivative  at an 

interior maximum . In the proof we need to account for the possibility of degenerate maxima where the second 

derivative in zero . For    
2

,0 xxUxUlet 


 . Then 02  


nU ,since U  is harmonic .if 
U attained 

a local maximum at an interior point then 0


U by the second derivative test thus 
U  no interior maximum, 

and it attains its maximum on the boundary .If,  xallforRx , , if follows that. 

(26)     2
RUSupUSupUSupUSup 





 

letting 
 0  ,we get that USupUSup


  .An application for the same a grummet to u  given in, 

UU


 infinf  .and the result follows . Sub harmonicfunction satisfy a maximum principle UU


 minmin  

,while sub harmonic function satisfy a minimum principle UUU


 minmin for all x . Physical terms, 

this means for example that the interior ofabounded region which contains no heat sources  on heat sources or  

sinks cannot be hotter that the maximum temperature on the boundary  or colder than the minimum temperature 

on the boundary .The maximum principle given  a uniqueness result for ( Dirichlet problem)  for the poison 

equation . 

Definition 2.6.6 

Let 
1

M and 
2

M be differentiable manifolds a mapping 
21

: MM  is a differentiable if it is differentiable  

objective and its inverse 1
 is diffoemorphism if it is differentiable   is said to be a local diffoemorphism at  

Mp  if there exist neighborhoods U of p and V of )( p such that VU : is a diffoemorphism , the 
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notion of diffoemorphism is the natural idea of equivalence between differentiable manifolds , its an immediate 

consequence of the chain rule that if 
21

: MM  is a diffoemorphism then. 

(27)                     
2)(1

: MTMTd
pp 

   

Is an isomorphism for all 
21

: MM  in particular , the dimensions of 
1

M and 
2

M are equal a local 

converse to this fact is the following 
2)(1

: MTMTd
pp 

  is an isomorphism then  is a local 

diffoemorphism at p from an immediate application of inverse function in n
R , for example be given a 

manifold structure again A mapping NMf 


:
1 in this case the manifolds N and M are said to be 

homeomorphism , using charts ),( U and ),( V for N and M respectively we can give a coordinate 

expression NMf :
~

 

 

Theorem 2.6.7 [ Compact Riemannian Manifolds ] 

Let M be compact Riemannian Manifold with or without boundary    .,, RFCMfM  proper function 

satisfying.       srforXprxFXprxFsr  ,,,,,, There exist a function    .,0,0: W satisfying 

  00  twhentW and   .00 W  

Definition 2.6.8 

Let 1

1


M and 1

2


M be differentiable manifolds and let 

21
: MM  be differentiable mapping for every 

1
Mp  and for each

1
MTv

p
 choose a differentiable curve 

1
),(: M  with pM )( and 

v )0( take   the mapping 
2

)(: MpTd
p 

 by given by )()( Mvd   is line of  and

1

2

1

1
:


 MM be a differentiable mapping and at 

1
Mp  be such

21
: MTMTd

p 
  is an isomorphism 

then  is a local homeomorphism . 

Proposition2.6.9 

Let n
M

1
and m

M
1

be differentiable manifolds and let 
21

: MM  be a differentiable mapping , for every 

1
Mp  and for each 

1
MTv

p
 choose a differentiable curve 

1
),(: M  with po )( , vo  )(

take   the mapping 
2)(1

: MTMTd
pp 

  given by )()( ovd
p

  is a linear mapping that dose 

not depend on the choice of  . 

Theorem 2.6.10 

The tangent bundle TM has a canonical differentiable structure making it into a smooth 2n-dimensional 

manifold, where N=dim. The charts identify any )()( TMMTUU
pp

 for an coordinate neighborhood

MU  , with n
RU  that is Hausdorff and second countable is called ( The manifold of tangent vectors ) 

Definition 2.6.11 

A smooth vectors fields on manifolds M is map TMMX : such that:(i) MTPX
p

)( for every G .(ii)  in 

every chart X is expressed as )/(
ii

xa  with coefficients )( xa
i

smooth functions of the local coordinates
i

x .  

Theorem2.6.12 

Suppose that on a smooth manifold M of dimension n there exist n vector fields  )()2()1(
....,,,

n
xxx for a basis 

of MT
p

at every point p of M , then MT
p

is isomorphic to n
RM  m here isomorphic means that TM and 

n
RM  are homeomorphism as smooth manifolds and for every Mp  , the homeomorphism restricts to 

between the tangent space MT
p

and vector space   n

i
RP  . 

Proof: 

define TMMTa
p




: on other hand , for any n
RM  for some Ra

i
 now define

 n

n
RMaasTMa  ,....,:)(:

1



is it clear from the construction and the hypotheses of theorem that 

 and 1
 are smooth using an arbitrary chart n

RMU : and corresponding chart. 

(28)                   mn
RRTMUT 


)(:

1
  

Definition 2.6.13 [ Direct Computationof The Spectrum] 

The first of those is straightforward: direct computation it rarely possible to explicitly compute the  spectrum of  

a manifold were actually discovered via this method . Milnor’s example  mentioned  above  consists  of two is 

spectral  factory-quotients of  Euclidean space by lattices of full rank being one of full rank being one of the few 

examples of  Riemannian  manifolds whose spectra can be computed explicitly spherical space forms – 

quotients of spheres by finite groups of orthogonal transformations acting without fixed points form another 

class of examples of manifolds is spectral for the Laplacian acting on p-forms for  kp    but not  for the 
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Laplacian acting on p-forms for 1 kp   (recall that a lens space is spherical space form where the group is 

cyclic .Definition  

 

3.5.14 Tensors on A vector Space 

A tensor  on V  is by definition a multiline map . 

(29)    











 RVVVV

sr

**
..........:   


V denoting the dual space to V , r  its covariant order, and s its contra variant order.(Assume 0r  or 0s ). 

Thus   assigns to each r-tuple of elements of V  and s-tupelo of elements of *
V a real number and if for each k, 

srk 1 , we hold every variable except the k-th  fixed, then   Satisfies the linearity condition  . 

(30)        
1111

,...,...,,...,...,,...,...,
kkkk

vvvvvvv   . 

For all R , and Vvv
kk
, or  

V .respectively For a fixed (r,s) we let )(V
r

s
 be the collection of all tensors on 

V  of covariant order r and contra variant order s. We know that as a function   from **
....... VVVV   to R 

they may be added and multiplied by scalars elements of R. With this addition and scalar Multiplication  r

s
V )(  is 

a vector space, so that if  
21

, )(V
r

s
 and ,,

21
R  then

2211
  , defined in the way alluded to above, that 

is, by. 

(31)               
   

   









,...,,...,

,...,

21222111

212211

vvvv

vv




 

is multiline, and therefore is in r

s
V )( . Thus r

s
V )(  has a natural vector space structure.  

Theorem 2.6.15 

With the natural definitions of addition and multiplication by elements of  R  the set r

s
V )(   of all tensors of order 

),( sr on  V  forms a vector space of dimension sr
n

 . 

Definition 2.6.16 [ Tensor Fields] 

A 
C covariant tensor field of order  r  on a 

C - manifold M  is a function   which assigns to each MP   

an element 
P

 of   
r

P
MT  and which has the additional property that given any 


C Vector fields on an open 

subset U  of  M , then  
r

XX ,...,
1

  is a 
C function on U , defined by ,      

rPPPr
XXPXX ,....,,...,

11
  . We 

denote by   
r

M   the set of all 


C covariant tensor fields of order r  on M .  

Definition 2.6.17  

We shall say that r
V  , r

V a vector space, is symmetric if for each rji  ,1 , we have : 

  ),...,,...,,...,(,...,,...,,...,
11

vvvvvvvv
ijrrij

  .Similarly, if interchanging the (i-th) and (j-th) variables, rji  ,1   

Changes the sign. 

(32)         ),...,,...,,...,(,...,,...,,...,
11

vvvvvvvv
ijrrij

   

then we say   is skew or anti symmetric or alternating; covariant tensors are often called exterior forms. A 

tensor field is symmetric (respectively, alternating) if it has this property at each point.  

 

2.7:  Geometrid Maximum and principle Riemannian manifolds  

The version of the analytic principle given by: 

(i)
0

U  is lower semi – continuous and  
00

HUM   in the sense of support function.(ii)
1

U  is upper – semi – 

continuous and   
00

HUM  in the sense function with a one – sided Hessian bound .(iii)
01

UU   in  and 

01
UU  is locally a 1,1

C - function in  finally if ij
a  and b are locally ,2k

C function in  . In particular if ij
a  and 

b are smooth is
01

UU  , n
R is specially natural in Lorentz Ian setting as 0

C space like hyper surfaces in 

definition   rrpdpS
r

 ),(exp,:
,


    them r

S
, contains    and neighborhood of    is smooth , at    

pointing unit normal 0r and  MTk   can a lows be locally represented as a graphs also applies to hyper 

surfaces in Riemannian manifolds that can be represented locally as graphs. We first state our conventions on 

the sign of the second fundamental form and the mean curvature to fix choice of signs a Lorentz Ian manifold

 gM . . 

Definition 2.7.1[ Space time and Space like] 

A subset MN  of that space-time  gM . is 0
C space likehyper surface , if for each Np  , there is a 

neighborhood U of p in M so that VN  is causal and edge less in U . 
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Remark 2.7.2 

In This definition not that if  UUND , is the domain of dependence of in U , then  UUND , is open in M  and

UU   is a Cauchy hyper surface is globally hyperbolic thus by replacing U by  UUND , we can assume the 

neighborhood U is the last definition is globally hyperbolic and that UU   in a Cauchy surface in U .         In 

particular a 0
C space like hyper surface is a topological.Let  gM . be a space-time and let 

0
N and 

1
N be two 0

C  

space like hyper surfaces in  gM . which meet at a point q . Say that no is locally to the future of 
1

N near q if for 

some neighborhood U of P in which 
1

N is a causal and edgeless  


,
10

NJUN  where  


,
1

NJ  is causal 

future of 
1

N in U . 

Definition 2.7.3 [Multiplication of Tensors on Vector Space] 

Let V  be a vector space and V  are tensors. The product of   and  , denoted 

   is a tensor of order sr   defined by   ),....,(),....,(),....,...,...(
1111 srrrsrrr

vvvvvvvv


  . 

The right hand side is the product of the values of   and  .The product defines a mapping    ,  of  x

 V
r   V

sr  . 

Theorem 2.7.4 

The product  V
r o  V

r
  V

sr   just defined is bilinear and associative. If n
 ,....,

1 is a basis of . 

(33)     


V
 

!!....!

!...
....

21

21

21

k

k

k

rrr

rrr 
   

then     nii
r

ii
r  ,...,1/....

1

1  is a basisof   r
V .Finally VWF :

*
is linear, then

     
***

FFF  .   

Proof:  

Each statement is proved by straightforward computation. To say   that   is bilinear means that if  ,  are 

numbers and   V
r , then      .

2121
  Similarly for the second variable. This is 

checked by evaluating each Side on sr  vectors of V ; in fact basis vectors suffice because of linearity 

Associatively,      ,is similarly verified the products on both sides being defined in the 

natural way. This allows us to drop the parentheses. To see that r
ii

  .....1 from a basis it is sufficient to note 

that if
n

ee ,...,
1

is the basis of  V  dual to n
 ,....,

1 , then the tensor r
ii ,...,

1  previously defined is exactly r
ii

  .....1

.This follows from the two definitions:  

(36)  
   

    
















rr

rr

jj

ii

jjiiif

jjiiif
ee

r

r

,...,,...,1

,...,,...,0
,...,

11

11.. .

1

1

          r

rr

r

r

r
i

j

i

j

i

jj

i

j

i

j

i

jj

ii
eeeee  ...,...,,...,.... 2

2

1

12

2

1

1

1

1  ,which show that both tensors have the same values 

on any (ordered) set of r basis vectors and are thus equal. Finally, given ,:
*

VWF   if Www
sr



,..,

1
, then 

(35)      ))(),...,((,...,
*11

*

srsr
wFwFwwF


   =   ))(),....,(()(),...,(

1*1* srrr
wFwFwFwF


  =

    ).,.....,(
1

**

sr
wwFF


   

Which proves      
***

FFF   and completes the proof. 

Theorem 2.7.8 [Multiplication of Tensor Field on Manifold] 

Let the mapping   Srsr
MMM


 )()( just defined is bilinear and associative. If  n

 ,....,
1  is a basis of  

1

M , 

then every element  
r

M  is a linear combination with 

C coefficients of    },...,1/....{
1

1 nii
r

ii r

  .  If

MNF : is a 

C mapping, M and   M
s , then      

***
FFF  , tensor field on .N  

Proof:  

Since two tensor fields are equal if and only if they are equal at each point, it is only necessary to see that these 

equations hold at each point, which follows at once from the definitions and the preceding theorem . 

Corollary 2.7.9  

Each r
U  including the restriction to U of any covariant tensor field on M , has a unique expression form  

 rr

r

r

ii

i i
ii

a     ........
1

1
. . . .

. Where at each point  
rr

iiii
EEaU ,...,,

11
. . . .

  are the Components of   in the basis

 r
ii

  .....1  and is 
C function on  .U  

 

2.8 : Tangent Space and Cotangent Space  

The tangent space )( MT
p

is defined as the vector space spanned by the tangents at p to all curves passing 

through point p in the manifold M . And The cotangent space )( MT
p



 of a manifold, at Mp  is defined as the 
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dual vector space to the tangent space )( MT
p

. We take the basis vectors ii
x

E


 for )( MT
p

, and we write the 

basis vectors for )( MT
p



 as the differential line elements ii
dxe   Thus the inner product is given by 

j

i

i

i dx
x




 , .  

Definition 2.8.1 [ Wedge Product ] 

Carton’s wedge product, also known as the exterior Product, as the ant symmetric tensor product of cotangent 

space basis elements. 

(36) )(
2

1
dxdydydxdydx   dxdy   

Note that, by definition, 0 dxdx . The differential line elements dx  and dy are called differential 1-forms or 

1-form; thus the wedge product is a rule for construction g 2-forms out of pairs of 1-forms. 

Definition 2.8.2 

Display equations should be broken and aligned for two-column display unless spanning across two columns is 

essential. Equations should be centered with equation numbers set flush right. If using Math Type, use the . 

Definition 2.8.3 [  Vector Analysis one Method Lengths] 

Classical vector analysis describes one method of measuring lengths of smooth paths in 3
R if   3

1,0: Rv  is 

such a paths, then its length is given by length dttvv )(  . Where  v  is the Euclidean length of the tangent 

vector )( t  , we want to do the same thing on an abstract manifold ,and we are clearly faced with one problem , 

how do we make sense of the length )( tv ,obviously , this problem can be solved if we assume that there is a 

procedure of measuring lengths of tangent vectors at any point on our manifold The simplest way to do achieve 

this is to assume that each tangent space is endowed with an inner product ( which can vary point in a smooth ). 

Definition 2.8.3 

A Riemannian manifold is a pair ).( gM  consisting of a smooth manifold M  and a metric g on the tangent 

bundle ,i.ea smooth symmetric positive definite tensor field on M  . The tensor g is called a Riemannian metric 

on M  . Two Riemannian manifold are said to be isometric if there exists a diffoemorphism
21

: MM   

such that 21
: gg 


 If ).( gM  is a Riemannian manifold then, for any Mx  the restriction 

RMTMTg
xxx

 )()(:
21

 . Is an inner product on the tangent space )( MT
x

we will frequently use thee 

alternative notation ),(),( 
xx

g the length of a tangent vector )( MTv
x

  is defined as usual 

 
2/1

, vvgv
xx

 . If   Mbav ,:  is a piecewise smooth path, then we defined is length by


b

a

dttvvL )()( . If we choose local coordinates ),....,(
1 n

xx  on M ,then we get a local description of g  as. 

(37)   







































ji

ji

ji

ji

xx
ggdxdxgg ,,,  

Proposition 2.8.4 

 Let be a smooth manifold, and denote by
M

R  the set of Riemannian metrics on M  ,then
M

R is a non –empty 

convex cone in the linear of symmetric tensor  

Proof :   

The only thing that is not obvious is that
M

R  is non-empty we will use again partitions of unity . Cover M  by 

coordinate neighborhoods
A

U


)( . Let j
x  be a collection of  local coordinates on


U  . Using these local 

coordinates we can construct by hand the metric 
g

on 


U by    


n
dxdxg  ...

1  

now , pick a partition of unity )(
0

MCB


 subordinated to cover


U  (i.e) there exists a map AB : such 

that
B

UB





  then define 



B

Bgg


 )( The reader can check easily g  is well defined ,and it is 

indeed a Riemann metric on M . 

Example 2.8.5 [ The Euclidean Space] 

The space n
R has a natural Riemann metric n

dxdxg ,....,
1

0
 The geometry of  

0
, gR

n  is the classical 

Euclidean geometry  

Example 2.8.6 [ Induced Metrics On Sub manifolds ] 

Let  gM ,  be Riemann manifold and MS   a sub manifold if MS   , denotes the natural inclusion then 

we obtain by pull back a metric on SggigS
S

/, 
 ,. For example , any invertible symmetric nn  matrix 
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defines a quadratic hyper surface in n
R  by  1),(,  xARxH

x

n

A
where   ,  denotes the Euclidean 

inner on n
R , 

A
H has a natural  . 

Remark 2.8.7 

On any manifold there exist many Riemannian metrics , and there is not natural way of selecting on of them  . 

One can visualize a Riemannian structure as defining  “ shape ” of the manifold . For example , the unit sphere

1
222
 zyx , is diffeomorphic to the ellipsoid       13/2/1/

32222
 zyx ,but they look “different” by 

However , appearances may be deceiving in is illustrated the deformation of a cylinder they look different ,but  

the metric structures are the same since we have not change length of curves on our sheep . the conclusion to be 

drawn from  these two examples is that we have to be very careful when we use the attribute “different”. 

Example 2.8.8[ The Hyperbolic Plane ] 

The Poincare model of the hyperbolic plane is the Riemannian manifold  gD ,  where D  is the unit open disk 

in the plan n
R  and the metric  g is given by . 

(39)                     













22

22
1

1
dydx

yx
g  

Example 2.8.9 

Left Invariant Metrics on lie groups Consider a lie group G  ,and denote by
G

L  its lie algebra then any inner 

product  ,  on 
G

L  induces a Riemannian metric
g

h  ,  on G defined by. 

(40)  












)(,:

)(,,),(
11

GTyXGg

YLXLyxyxh

g

gggg

 

Where )()(:)(
1

1
GTGTL

gg






 is the differential at Gg  of the left translation map
1

g
L . One checks easily 

that check easily that the correspondence   ,gG   is a smooth tensor field, and it is left invariant (i,e) 

GghhL
g




. If G  is also compact, we can use the averaging technician to produce metrics which are 

both left and right invariant. 

III. Conclusion 
The paper study Riemannian differenterentiable manifolds is a generalization of locally Euclidean n

E  in every 

point has a neighbored is called a chart homeomorphism, so that many concepts from as differentiability 

manifolds. We give the basic definitions, theorems and properties of Laplacian Riemannian manifolds becomes 

the spectrum of compact support M and Direct commutation of the spectrum, and spectral geometry of operators 

de Rahm. 
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