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ABSTRACT : Stokes proved that it is possible to express a surface integral in terms of a line integral round 

the boundary curve.Just as Green employed Stokes theorem in a vector field to establish another theorem 

(deduction), Gauss divergence theorem is employed herein to establish new special deductions i.e. equations 

(10), (12) and (13). The equations are tested with real live problems and the responses are positive. 
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I. INTRODUCTION 
 It is known that the surface integral of  over S represents the lines of force diverging out of S. if the 

surface S encloses a volume V then, the quantity  gives the lines of force which diverge per unit volume 

and represents the lines which diverge from the point to which the volume reduces in the 

limiting position. This is defined as the divergence of . Gauss theorem can be deduced as a consequence of this 

definition of divergence (Sastry, 1986; Sokolnikoff, 1941; Gupta, 2004). 

Just as Green established this theorem from Stokes theorem, i.e. 

  ……………………………………………(1) 

From ,   ……………………………………………(2) 

new special deductions are to be established herein from the Gauss divergence theorem i.e. that the volume 

integral (triple integral) on the left hand-side can be expressed as a surface integral (double integral) on the 

right-hand side (Lass, 1950; Philips, 1933), 

 

 

    ………………………………….(3) 

The objective is to establish these new special deductions from Gauss divergence theorem. Triple integrals taken 

over a region R in space can be transformed into surface integrals over the boundary surface S of R (and 

conversely) by the divergence theorem of Gauss. This is of practical interest because one of the two kinds of 

integral is often simpler than the other. It also helps in establishing fundamental equations in fluid flow, heat 

conduction, etc. (Marshal et al., 1947; Dass, 1996; Sastry, 1986). 

 

II. INTEGRAL THEORY 
 Most of the integrals we encounter in vector analysis are scalar quantities. For instance, given a vector 

function (x,y,z), we are often interested in the integral of its tangential component along a curve c or in the 

integral of its normal component over a surface S (Wylie, 1985). In the first case, if  is the vector from the 

origin to a general point of C so that  is the unit vector tangent to C at a general point, then  is the 

tangential component of  and  

   .…………………………………………..(4) 

is the integral of this component along the curve C. In the second case, if n is the unit normal to S at a general 

point, then  is the normal component of  and 

      ………………………………….(5) 

is the integral of this component over the surface S. Other scalar integrals of frequent occurrence are the surface 

integral of the normal component of the curl of  

     ………………………………………..….(6) 

and the volume integral of the divergence of  
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      ………………………………….(7) 

 
 

Fundamental in many of the applications of vector analysis is the so-called divergence theorem, which asserts 

the equality of the intervals (2) and (7) when V is the volume bounded by the closed regular surface S (Wylie, 

1985; Hildebrand, 1947). 

Gauss divergence theorem: If  (x,y,z) and ∇. are continuous over the closed regular surface S and its interior 

V, and if n is the unit vector perpendicular to S at a general point and extending outward from S, then: 

 

 

 =     …………………………………………..(8) 

 

III. NEW SPECIAL DEDUCTIONS FROM GAUSS THEOREM 
If F = Pi + Qj + Rk is a vector field, 

Where P = P (x,y,z), Q = Q(x,y,z) and R = R(x,y,z), over the surface  

The Gauss divergence theorem states that: 

    ………………………………….……….(3) 

For ;  

div  = .F = .  

 …………………………………………..(9) 

Let’s deal with  

Now  

 

d  

………………………………(10) 

From (3), (8) and (10), 

……………………...(11) 

The surface area term dS depends on geometry of the figure in question. 

If we project dS on to yz-plane, dRx = dS (Cosα)  

 

Cosα =  

If we project dS on to xz-plane, dRy = dS (Cosβ) 

Cosβ =  

If we project dS on to xy-plane, dRz = dS (Cosϒ) 

Cosϒ =  

Hence, dS =  

=  

 ……………………………………(12) 

Substituting (12) into (11) and simplifying, we have: 

………… ……(13) 

For two opposite xy – planes, dSz =( k) dxdy 

For two opposite yz – planes, dSx = ( i) dydz  
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For two opposite xz – plane, dSy = ( j) dxdz 

 
...............................................(14) 

For cylinders, (r, , z), put x = rCos , y = r Sin , z =z, and dS = r d dz, dv = r dr d  dz 

For spheres, (r, , ), Put x = r Sin Cos , y = r Sin Sin , z = r Cos , dS = r
2
Sin drd d  

If S does not have the property of being exactly two-valued over its projections on each of the coordinate planes, 

then we can partition its interior V into sub-regionsVi whose boundaries Si do have this property. Now, applying 

our limited result to each of these regions, we obtain a set of equations of the form:  

 

   …………………………………………..(15) 

If these are added, the sum of the volume integrals is, of course, just the integral of  throughout the entire 

volume V. the sum of the surface integrals is equal to the integral of   over the original surface S plus a set 

of integrals over the auxiliary boundary surfaces which were introduces when V was subdivided. These cancel 

in pairs, however, since the integration extends twice over each interface, with integrands which are identical 

except for the oppositely directed unit normal they contain as factors (Wylie, 1985).  

The theorem can be extended to surfaces which are such that lines parallel to the coordinate axes meet them in 

more than two points (Gupta, 2004). 

Statement: If P = P (x,y,z), Q = Q (x,y,z), R = R (x,y,z),  

can be continuous functions over a closed bounded region R in space whose boundary is a piecewise smooth 

orientable surface S, in x-y, y-z, and z-x planes, then equations (11), (13) and (14). 

 

IV. RESULTS 
 Two examples curled from Stroud, K. (1994) to illustrate the theorem new special deductions are 

presented below: 

Example 1: Verify the divergence theorem for the vector field: F = x
2
i + zj + jk, taken over the region bounded 

by the planes: Z = 0, z = 2, x = 0, x = 1, y = 0, y = 3. 

(a) To find  

div  = .(x
2
i + zj + yk)   

(x
2
) +  (z) + (y) = 2x + 0 + 0 = 2x 

 
Inserting the limits and completing the integration, 

For  

 =  

 

(b) To find i.e. i.e. 

(i)S1 (base): z = 0;  = -k (outwards and downwards) 

F = x
2
i + yk, dS1 = dxdy 

=  =  

(ii) S2 (top): z = 2: n = k, dS2 = dxdy 

For =  

(iii) S3 (right-hand end): y = 3;  = j, dS3 = dxdz 

F = x
2
i + zj + yk 

:. =  =  

(iv) S4 (left-hand end): y = 0;  dS4 = dxdz 

For  
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 =  

 

(v) S5 (front): x = 1:  dS5 = dydz 

 =  

(vi) S6 (back): x = 0:  dS6 = dydz 

 =  

 

 
 

nd from our previous work in section (a)  

 

We have therefore verified as required that, in this example 

 
Example 2: Verify the Gauss divergence theorem for the vector field: F = xi + 2j +2

2
k, taken over the region 

bounded by the planes z= 0, z = 4, x = 0, y = 0 and the surface x
2
 + y

2
 = 4 in the first octant. 

(a) div F =  = .(xi + 2j + 2
2
k) 

:.  

Changing to cylindrical polar coordinates (p, , z) 

x = pCos ; y = pSin ; z = z; dV = p dp d dz 

Transforming the variables and inserting the appropriate limits, we then have: 

For  = 

 

 

(b) Now we evaluate  over the closed surface. 

(i) S1: z = 0 ; n = k ; F = xi + 2j 

:.  

(ii) S2: x = 4; n = k; F = xi + 2j + 16k 

:.  

For we have 

(iii) S3: y = 0; n = -j; F = xi +2j + z
2
k 

:. + z
2
k) (-j) dS =  

(iv) S4: x = 0; n = -j; F = 2j + z
2
k 

:. + z
2
k) (-i) dS = 0      

Finally, we have: 

(v) S5: x
2
 + y

2
 -4 = 0 

 

n =  

 
Converting to cylindrical polar coordinates, this gives 

Since we have  

Also,  
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Therefore, for the total surface S: 

 

 
 

V. DISCUSSION 
In the results illustrated, it will be remembered that, for a closed surface, the normal vectors at all 

points are drawn in an outward direction. 

In the Gauss theorem, the vector point function  denotes the velocity vector of an incompressible fluid 

of unit density and S denotes any closed surface drawn in the space of the fluid, enclosing a volume.  

Since the scalar product F.n represents the velocity-component at a point of the surface S in the direction of the 

outward drawn normal, therefore, expresses the amount of fluid flowing out in unit time through the 

element of surface . As such, the integral round the surface S, i.e.  gives the amount of fluid flowing 

out of the surface S in unit time. But in order to maintain the continuity of the flow, the total amount of fluid 

flowing outwards must be continually supplied so that inside the region there are sources producing fluid. 

Now the  at any point represents the amount of fluid passing through that point per unit time per unit 

volume. So,  may be regarded as the source-intensity of the incompressible fluid at any point (Gupta, 

2004). 

 

VI. CONCLUSION 
The total volume per second of a moving fluid flowing out from a closed surface S is equal to the total 

volume per second of fluid flowing out from all volume elements in S. 

One of the most important uses of vector analysis is in the concise formulation of physical laws and the 

deviation of other results from those laws. For instance, the development of the concept of potential and 

obtaining the partial differential equation satisfied by the gravitational potential is one of the examples of this 

sort. 

In most recent problems, the masses or changes which produce  are given, and it is required to find  itself. 
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