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ABSTRACT : The current paper aims at presenting the capabilities and benefits of an online stereo 3D 

simulation for the purpose of unmanned helicopter autopilot tuning. The parameters of the helicopter airframe 

are important for tuning the gains in the autopilot. The airframe is modelled as a rigid body whose inertial 

properties are fully described by the inertia ellipsoid. The inertia ellipsoid is another form of presenting the 

moment of inertia tensor of rigid bodies but instead of using a numerical approach the described method 

implements 3D graphical visualization. The current paper focuses on the benefits from stereoscopic graphical 

3D presentation of the inertia ellipsoid and how such a method helps designers and researchers analyse, 

synthesise and tune unmanned helicopter autopilot algorithms. The simulation, subject to the current material, 

may be observed at the following web address: http://ialms.net/sim/. 
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I. INTRODUCTION 
 The current article shows a new method of presenting the inertia ellipsoid of rigid bodies and its 

properties using a visual online environment. A simulation that has unrestricted access on the Internet 

demonstrates the inertia tensor of various rigid bodies to researchers in universities and institutes around the 

world. The major features of the advised simulation are the stereo 3D environment, in which the inertia ellipsoid 

of various rigid bodies is demonstrated along with translations of the ellipsoid and its moment of inertia tensor 

to any point in the body reference frame. Along with the inertia ellipsoid, the principal axes of inertia are also 

displayed. The simulation prints the diagonalized translated moment of inertia tensor and the diagonalizing 

rotation matrix (Figure 1). The simulation, described in the current paper, may be observed on web address: 

http://ialms.net/sim/. 

 

 
Figure 1. Translated moment of inertia tensor and inertia ellipsoid to the vertex of a rectangular parallelepiped-

shaped homogeneous rigid body and 3D graphical visualization 

http://ialms.net/sim/
http://ialms.net/sim/
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II. MATHEMATICAL FOUNDATIONS OF THE DESCRIBED 3D SIMULATION 
To prove the consistency and fidelity of the presented simulation, a concise introduction to the inertial 

properties of rigid bodies follows. Moment of inertia of a rigid body about a given axis describes quantitatively 

the body inertia behaviour during a rotation about that axis. If a rigid body has volume V  then its moment of 

inertia of about axis OO   is: 

 
VV

OO dVrdmrI 22
, 

 

where   is the body density at the location of elementary mass  dVdm   and r  is the perpendicular radius-

vector from the axis of rotation OO   to the elementary mass. About any given axis the rigid body has a certain 

and generally different moment of inertia. Each moment of inertia could be calculated using the equation above. 

An alternative way of calculating the moment of inertia is by using the relation between the angular momentum 

and angular velocity: 

IL 


 , 

 

Here vector L


 is the angular momentum, and vector 


 is the angular velocity of the rotational motion. 

Although useful, this equation is applicable only to rotations that are realized about a principal axis of inertia. 

Only then L


 and 


 are parallel to each other and the relation between them is presented using a product with a 

scalar value, as in the example above. Such a rotation is the rotation of an axially symmetric homogenous rigid 

body about its axis of symmetry. 

Generally, vectors L


 and 


 are not parallel, but a relation connecting them still exists and it is a 

tensor of second rang called moment of inertia tensor: 
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This tensor is in respect to a point O , having that axis of rotation passes through this point. To define the 

relation between L


 and 


, these two vectors should be presented in a matrix form (one-row-matrixes): 

 OωIL   

 

It follows that components of vector L


 are: 

xzzxyyxxxx IIIL    

yzzyyyxyxy IIIL    

zzzyzyxzxz IIIL    

 

In this general case, the momentary axis of rotation coincides with 


. The inertia about this axis of rotation 

creates an angular momentum about this same axis that is the projection of the angular momentum vector L


 

along vector 


. In matrix form we have: 

 


~
Lω

ω L  (
~

ω  is the transposed matrix of ω ) 

 

Substituting the angular momentum with the product of angular velocity and the moment of inertia tensor 

yields: 

 


ωωωω Inn
ωIω

IL  ~
~

, 

 

or the projection of the L


 along the axis of rotation is derived from the magnitude of 


 and the scalar quantity 

ωI . It is called a reduced moment of inertia from the moment of inertia tensor about a given axis of rotation 
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defined by its direction unit vector ωn  or 



 



 n  in vector form. Thus the reduced moment of inertia may be 

expressed using the components of the unit vector 



n  and the moment of inertia tensor: 

 yzzyxzzxxyyxzzzyyyxxx InnInnInnInInInI 222222~  ωωω Inn , 

 

Because vector 



n  has unit length, its components could be substituted with the direction cosines defining the 

axis of rotation: 

 coscos2coscos2coscos2coscoscos 222
yzxzxyzzyyxx IIIIIII ω  

 

At the same time, the reduced moment of inertia may be expressed through L


 and 


 as follows: 
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The inertial ellipsoid enables the researcher to observe in stereoscopic 3D graphical scene the moment 

of inertia tensor properties, which is essential for the following autopilot synthesis labour. The ellipsoid is 

defined in such a manner that its three axes are the reciprocals of the square roots of the principal moments of 

inertia (Figure 1, 2, 3 and 4): 
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Figure 2. The inertia ellipsoid of the non-displaced moment of inertia tensor 

 

What the simulation offers to the researcher 

The simulation was developed in order to facilitate researchers and scientists while studying the 

mechanical properties of unmanned helicopter airframes and their input in autopilot algorithms. Further the 

simulation helps engineers in unmanned helicopter autopilot analysis and synthesis. The simulation helps the 

construction of the inertia ellipsoid of different rigid bodies and the observation of the principal moments of 

inertia. To make clear the effectiveness of the simulation while solving mechanics problems, several tasks are 

disclosed as examples. The solutions could be observed in 3D stereo mode. Each step of a solution has its 
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graphical representation, which clarifies the notion of the used mathematical formulae and presents the acquired 

results and solutions in graphical manner. Hence the simulation is useful in drawing practical understanding 

among researchers. 

 

Task 1 

Let’s have a homogenous rigid body. Its shape is a rectangular parallelepiped and its mass is 10 kg 

(Figure 2). Body reference frame origin coincides with the centre of mass and its axes are parallel to the body 

edges. The body dimensions are 2.0,5.0,0.1 m along the OzOyOx ,,  axes respectively. The task is to calculate 

the moment of inertia tensor for the centre of mass cI . 

Note: Without applying similarity transformation, the moment of inertia tensor is diagonal 
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I . xxI , yyI  and zzI  correspond to the principle moments of inertia of the centre of mass 

along the body reference frame coordinate axes. This follows from the body homogenous and symmetrical 

properties. 

 

 
 

Figure 3. Displacement of the moment of inertia tensor along the Ox and Oy axes. 

 

Solution to task 1: 

Homogenous rectangular parallelepiped moment of inertia tensor at its centre of mass in a reference 

frame oriented along the body edges is derived by the following formula: 
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Here 10m kg is the body mass, and 1a m, 5.0b m and 2.0c m are the body dimensions. Hence, 

the answer follows to be: 
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Task 2 

Calculate the translated moment of inertia tensor from task 1 at the vertex of the body that has only 

positive coordinates in the body reference frame. 

 

Solution to task 2: 
The parallel axis theorem (Huygens-Steiner theorem) solves this problem. 
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In the above equation matrix 1  is the 33  identity matrix, vector r  is the translation vector. The body is 

homogenous and its centre of mass and geometrical centre coincide. It follows that the translation vector 

pointing to the vertex of the body with only positive coordinates is equal to  1.025.05.0  (see Figure 1). 

Figure 3 shows a translation of the moment of inertia tensor along both the Ox  and Oy  axes. Note that in the 

case of translation along a single coordinate axis, a translated tensor is diagonal. In the case of moment of inertia 

tensor translation along two axes, four of the translated tensor’s non-diagonal components are zeroes. 

 

Task 3 

 Diagonalize the translated moment of inertia tensor from task 2. 

 

Solution to task 3: Using the theory of symmetric matrixes one could always diagonalize a 33  symmetric 

matrix or symmetric rang 2 tensor. The diagonalized tensor will have only three non-zero values and they will 

be found in the main diagonal. The other three values (products of inertia) found in the non-dagonalized tensor 

will be represented by the transformation used to diagonalize the tensor. This transformation is a similarity 

transformation realized through applying a rotation matrix R . We can prove this assumption, taking into 

account that under a certain rotation R  the principle axes of the moment of inertia tensor coincide with the axes 

of the body reference frame and the rotated tensor becomes diagonalized: 
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From the eigenvectors  DiDiDiDi zyxn  and eigenvalues i  of the pursued diagonalized tensor we 

have: 

(3) 0 iDiDDiiDiDDi  nInnIn  

 

This matrix equation shows a homogenous system of three linear equations having a non-trivial solution only if 

the determinant of its coefficients is zero: 

(4)     00  iDzziDyyiDxxiD III 1I  

 

Formula (4) has three real roots: DxxI1 , DyyI2  and DzzI3 , hence the diagonalized tensor is: 
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After we apply the similarity transformation (2) to equation (3) we get: 

 iDiDiiDiDiDDi  ~~~
RnIRnnIRRnIn  

(6) 0 iiiiii  nInnIn  
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It follows that vectors  iiii zyxn  are the eigenvectors of I . 

(7) RnnRnn iDiDii  ~
 

 

We see that DI  and I  have the same eigenvalues. Calculating the eigenvalues of I  and substituting them in (5) 

gives the wanted diagonalized tensor DI . Analyse equation (6) helps in finding the eigenvalues of I . Similarly 

to (3), this matrix equation derives a homogenous system of three linear equations. This system has non-trivial 

solution only if the determinant of its coefficients is zero: 
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The cubic equation (8) yields three roots i  for 3..1i  - 0.371  , 3.982   and 4.253  . Substituting 

these eigenvalues in (5) leads to the sought solution: 
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DI  (see Figure 1). 

 

 

Task 4 

Calculate the rotation matrix R  that diagonalizes the tensor from task 3. 

 

Solution to task 4: 

Each eigenvalue of I  substituted in (3) yields a corresponding solution for Din , if Din  is constraint 

to a unit eigenvector: 
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From (7) and (9) it follows that the rotation matrix R  transforms vectors in  to the orthogonal basis of the body 

reference frame kji ,, . However, the rotation matrix is defined by the direction cosines of one basis rotated to 

another basis: 
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Vectors in are unit vectors and their components are equal to their direction cosines, so: 
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The last step is to find the eigenvectors in . We use equation (6) along with the unit length of the eigenvectors: 
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System (12) enables iy  and iz  to be expressed through ix , using the first three equations, and substituting in 

the last equation: 
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From the last equation of system (13) ix  is found as follows: 
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We find the values of iy  and iz  by substituting ix  in the first two equations of (13). Note that the components 

iii zyx ,,  of eigenvector in  do not have defined sign. There are two possibilities yielding an eigenvector in  

along a defined line, but with two possible opposite directions. The correct direction will be found later. After 

finding all three eigenvectors 1n , 2n  and 3n  their components are substituted in (11) to generate the sought 

rotation matrix R  (see Figure 1): 
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However, if the incorrect directions (signs in (14)) were chosen, matrix R  would yield an inverse (improper) 

rotation. This fact can be verified by calculating the determinant of R , which should be 1 : 

1R  

 

This means that matrix R  is a proper rotation. In the case when the determinant is 1 , matrix R  should be 

corrected to a proper rotation by multiplying it with a negative identity (changing direction of all eigenvectors) 

or by changing the sign of one of its rows (changing direction of one of the eigenvectors). Visit 

http://ialms.net/sim/ to simulate other examples. 

 

III. CONCLUSION 
 The described in this article simulation of rigid body properties in a stereo 3D virtual environment 

enables researchers and engineers to observe setups that are impossible to be created in laboratory conditions. 

Such an approach reveals important insights for the scientists working on unmanned helicopter autopilot 

analysis, synthesis and tuning. 

 Authors of the presented material express their gratitude to Assoc. Professor Vesela Decheva. 
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