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ABSTRACT: This paper studies the Raviart-Thomas mixed finite element method for solving the general 

second-order elliptic eigenvalue problem. It derives and analyzes a class of stable residual-type posterior error 

estimators, and through theoretical analysis, proves the effectiveness and reliability of the proposed posterior 

error indicators. Based on the posterior error estimate in this paper, we develop an adaptive algorithm to solve 

the second-order elliptic eigenvalue problem, and the numerical results demonstrate that the adaptive algorithm 

established in this paper is efficient. 
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I. INTRODUCTION  

The second-order elliptic eigenvalue problem is a classical and widely applied topic in mathematical 

physics, with significant importance in fields such as engineering, physics, and computational science. 

Reference [1] discusses extrapolation methods for eigenvalue problems, reference [2] explores reconstruction 

algorithms for function values, and reference [3] addresses multi-level correction methods for eigenvalue 

problems, among others. The mixed finite element method, as an important branch of finite element methods, 

has gained increasing attention in practical applications. Unlike traditional standard finite element methods, the 

mixed finite element method enhances the mathematical expressiveness of the model by simultaneously 

considering multiple physical quantities (such as displacement, stress, pressure, etc.) as unknowns, and 

introducing additional variables and constraints. This method provides higher solution accuracy and stronger 

numerical stability when handling complex problems. 

With the continuous development of computer technology and numerical methods, the proposal and 

application of adaptive methods have become one of the important advancements in finite element analysis. In 

1978, Babuska and Rheinboldt [4][5] first introduced adaptive methods and residual-based a posteriori error 

estimation, which attracted widespread attention in the field of scientific and engineering computation, leading 

to significant achievements. In recent years, this method has become one of the mainstream approaches in 

scientific computing and has been extensively researched (see [6][7]), with reference [8] discussing the 

application of posterior error estimation and adaptive algorithms. 

This paper primarily uses the mixed finite element method to solve the second-order elliptic eigenvalue 

problem, proposing a residual-based a posteriori error indicator and verifying its reliability and effectiveness. 

Based on this, adaptive computation is implemented. Numerical results show that the adaptive algorithm 

achieves optimal convergence rates. Furthermore, the error curves indicate that, for the same degrees of 

freedom, the approximation obtained using the adaptive algorithm is more accurate than that obtained using the 

uniform mesh method. 

1.1 Notations and Basic Preparation: 

The following is a description of the notation that will be used in this article. For 𝑠 > 0, we denote as 

‖∙‖𝑠,Ω  the norms of the Sobolev space 𝐻𝑠(Ω)  and [𝐻𝑠(Ω)]2 , with the convention 𝐻0(Ω) = 𝐿2(Ω)  and 

[𝐻0(Ω)]2 = [𝐿2(Ω)]2. In addition, we define the Hilbert space as follows 

𝐻(𝑑𝑖𝑣, Ω) = {𝝉 ∈ (𝐿2(Ω))
2

: 𝑑𝑖𝑣𝝉 ∈ 𝐿2(Ω)} 

and the corresponding norm is given by: 
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 ‖𝝉‖𝐻(𝑑𝑖𝑣,Ω)
2 = ‖𝝉‖0,Ω

2 + ‖𝑑𝑖𝑣𝝉‖0,Ω
2  (1.1) 

The Poincaré inequality: If Ω is a connected and bounded convex domain in one direction, then for any 𝑣 ∈

𝐻1(Ω), we have: 

 ‖𝑣‖0,Ω ≲ ‖∇𝑣‖0,Ω (1.2) 

The definition of the curl is as follows: 

 𝒄𝒖𝒓𝒍𝜙 = (
𝜕𝜙

𝜕𝑥2
, −

𝜕𝜙

𝜕𝑥1
) ,  𝑟𝑜𝑡𝝋 =

𝜕𝜑2

𝜕𝑥1
−

𝜕𝜑1

𝜕𝑥2
 (1.3) 

Finally, the relation 𝑎 ≲ 𝑏 represents 𝑎 ≤ 𝐶𝑏, where 𝐶 denotes a constant independent of ℎ, the mesh size, and 

similarly, 𝑎 ≳ 𝑏 represents 𝑎 ≥ 𝐶𝑏. 

 

II. THE SECOND-ORDER ELLIPTIC EIGENVALUE PROBLEM  
Consider the second-order elliptic eigenvalue problem: Find 𝜆 ∈ 𝑅, 𝑢 ∈ 𝐻0

1(Ω), such that 

 {
−∇ ⋅ (𝑐(𝑥)∇𝑢) = 𝜆𝑢,     𝑖𝑛     Ω
𝑢 = 0,                            𝑜𝑛   𝜕Ω

 (2.1) 

where 𝑐(𝑥) ≥ 𝑐0 > 0, Ω ⊂ 𝑅2 is a bounded domain with a Lipschitz boundary, and ∇ , ∇ ∙ denote the gradient 

operator and the divergence operator, respectively. 

Let 𝝈 = 𝑐(𝑥) ∙ ∇𝑢, then the problem (2.1) is equivalent to 

 {
𝑐(𝑥)−1𝝈 − ∇𝑢 = 0,    𝑖𝑛      Ω
−𝑑𝑖𝑣𝝈 = 𝜆𝑢,              𝑖𝑛      Ω

𝑢 = 0,                          𝑜𝑛    𝜕Ω

 (2.2) 

let 𝑯 = 𝐻(𝑑𝑖𝑣, Ω), 𝑉 = 𝐺 = 𝐿2(Ω), from the equivalent form (2.2), the mixed variational form of the problem 

(2.1) is obtained as follows: Find (𝜆, 𝝈, 𝑢) ∈ 𝑅 × 𝑯 × 𝑉, such that  

  {
𝑎(𝝈, 𝝉) + 𝑏(𝝉, 𝑢) = 0,      ∀𝝉 ∈ 𝑯

𝑏(𝝈, 𝑣) = −𝜆𝑟(𝑢, 𝑣),        ∀𝑣 ∈ 𝑉
 (2.3) 

where the bilinear forms 𝑎(⋅,⋅), 𝑏(⋅,⋅), and 𝑟(⋅,⋅) are defined as follows: 

𝑎(𝝈, 𝝉) = ∫ 𝑐−1𝝈𝝉𝑑𝑥
Ω

,    𝑏(𝝉, 𝑣) = ∫ 𝑑𝑖𝑣𝝉 ⋅ 𝑣𝑑𝑥
Ω

,    𝑟(𝑢, 𝑣) = ∫ 𝑢𝑣𝑑𝑥
Ω

 

and the bilinear forms 𝑎(⋅,⋅), 𝑏(⋅,⋅), and 𝑟(⋅,⋅) have the following properties 

   |𝑎(𝝈, 𝝉)| ≲ ‖𝝈‖𝑯‖𝝉‖𝑯,   ∀𝝈, 𝝉 ∈ 𝑯 (2.4) 

 𝑎(𝝈, 𝝈) ≳ ‖𝝈‖𝑯
2 ,             ∀𝝈 ∈ 𝑯 (2.5) 

          |𝑏(𝝉, 𝑣)| ≲ ‖𝜏‖𝑯‖𝑣‖𝑉 ,    ∀𝝉 ∈ 𝑯, 𝑣 ∈ 𝑉 (2.6) 

   |𝑟(𝑢, 𝑣)| ≲ ‖𝑢‖𝑉‖𝑣‖𝑉 ,    ∀𝑢, 𝑣 ∈ 𝑉 (2.7) 

For the eigenvalue 𝜆, there exists the Rayleigh quotient expression 

 𝜆 =
𝑎(𝝈,𝝈)

𝑟(𝑢,𝑢)
 (2.8) 

From [9][12], the eigenvalue problem (2.3) has an eigenvalue sequence {𝜆𝑗} 

0 ≤ 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑘 ≤⋅⋅⋅, 𝑙𝑖𝑚
𝑘→∞

𝜆𝑘 = ∞ 

and the associated eigenfunctions 

(𝝈1, 𝑢1), (𝝈2, 𝑢2), ⋯ , (𝝈𝑘 , 𝑢𝑘),⋅⋅⋅ 

  

III. STANDARD MIXED FINITE ELEMENT APPROXIMATION 
Let 𝒯ℎ = {𝜅} be a shape-regular mesh of Ω, where ℎ𝜅 denotes the diameter of each element 𝜅, and ℎ =

𝑚𝑎𝑥
𝜅∈𝒯ℎ

ℎ𝜅. Let ℰℎ be the collection of all edges, with ℎ𝑒 representing the length of edge 𝑒 ∈ ℰℎ. For any 𝜅 ∈ 𝒯ℎ, 

we denote by 𝒫𝑘(𝜅) the space of polynomials defined on element 𝜅, where 𝑘 ≥ 0. With these ingredients at 

hand, we define the Raviart-Thomas space as follows (see [10]) 

 𝑯ℎ = {𝝉ℎ ∈ 𝐻(𝑑𝑖𝑣, Ω): 𝝉ℎ|𝜅 ∈ [𝒫𝑘(𝜅)]2 ⊕ 𝒙 ⋅ 𝒫𝑘(𝜅)   ∀𝜅 ∈ 𝒯ℎ} (3.1) 

 𝑉ℎ = {𝑣ℎ ∈ 𝐿2(Ω): 𝑣ℎ|𝜅 ∈ 𝒫𝑘(𝜅)   ∀𝜅 ∈ 𝒯ℎ} (3.2) 

Then, according to the definitions of spaces 𝑯ℎ and 𝑉ℎ, we have 

 𝑑𝑖𝑣𝑯ℎ = 𝑉ℎ (3.3) 

The mixed finite element approximation of problem (2.3) is: Find (𝜆ℎ, 𝝈ℎ , 𝑢ℎ) ∈ 𝑅 × 𝑯ℎ × 𝑉ℎ, such 

that  



An Adaptive Mixed Finite Element Method for Second Order Elliptic Eigenvalue Problems 

DOI: 10.35629/6734-14012436                                      www.ijesi.org                                                     26 | Page 

 {
𝑎(𝝈ℎ , 𝝉ℎ) + 𝑏(𝝉ℎ , 𝑢ℎ) = 0,         ∀𝝉ℎ ∈ 𝑯ℎ

𝑏(𝝈ℎ , 𝑣ℎ) = −𝜆ℎ𝑟(𝑢ℎ, 𝑣ℎ),        ∀𝑣ℎ ∈ 𝑉ℎ
 (3.4) 

for the eigenvalue 𝜆ℎ, there exists the Rayleigh quotient expression 

 𝜆ℎ =
𝑎(𝝈ℎ,𝝈ℎ)

𝑟(𝑢ℎ,𝑢ℎ)
  (3.5) 

From [9],[12], the eigenvalue problem (3.4) has eigenvalues as follow 

0 ≤ 𝜆1,ℎ ≤ 𝜆2,ℎ ≤ ⋯ ≤ 𝜆𝑘,ℎ ≤⋅⋅⋅≤ 𝜆𝑁,ℎ, 𝑙𝑖𝑚
𝑘→∞

𝜆𝑘 = ∞ 

and the associated eigenfunctions 

(𝝈1,ℎ, 𝑢1,ℎ), (𝝈2,ℎ, 𝑢2,ℎ), ⋯ , (𝝈𝑘,ℎ, 𝑢𝑘,ℎ),⋅⋅⋅, (𝝈𝑁,ℎ, 𝑢𝑁,ℎ) 

Define the L2- projection operator 𝛱ℎ: 𝐿2(Ω) → 𝑉ℎ, which satisfies 

 ‖𝑣 − 𝛱ℎ𝑣‖0 ≲ ℎ|𝑣|1    ∀𝑣 ∈ 𝐻1(Ω) (3.6) 

Define the Raviart-Thomas interpolation operator 𝑸ℎ: 𝑾 → 𝑯ℎ, where 𝑾 = 𝐻(𝑑𝑖𝑣, Ω) ∩ [𝐿𝑠(Ω)]2, for 𝑠 > 2, it 

satisfies 

 ‖𝝈 − 𝑸ℎ𝝈‖0 ≲ ℎ|𝝈|1,  ∀𝝈 ∈ 𝐻1(Ω) ∩ 𝐻(𝑑𝑖𝑣, Ω) (3.7) 

therefore, the projection operator 𝛱ℎ  and the interpolation operator 𝑸ℎ  satisfy the following commutative 

property 

 𝑑𝑖𝑣𝑸ℎ = 𝛱ℎ𝑑𝑖𝑣 (3.8) 

Let 𝐼𝑑 denote the identity, and ⊥ denote the L2-orthogonality, then we have 

 𝑑𝑖𝑣(𝐼𝑑 − 𝑸ℎ)𝑾 ⊥ 𝑉ℎ (3.9) 

Furthermore, we assume that the interpolation satisfies a local error estimate, then we have 

 ‖ℎ−1(𝐼𝑑 − 𝑸ℎ)𝝉‖0 ≲ |𝝉|1,∪𝒯ℎ
, 𝝉 ∈ 𝐻1(Ω) ∩ 𝐻(𝑑𝑖𝑣, Ω) (3.10) 

Finally, assuming that the interpolation operator 𝑸ℎ approximates the normal component on the boundary, then 

for any 𝑒 ∈ ℰℎ, 𝑣ℎ ∈ 𝑉ℎ, and 𝝉 ∈ 𝑾, we can obtain 

 ∫ 𝑣ℎ ⋅ (𝐼𝑑 − 𝑸ℎ)𝝉 ⋅ 𝒏𝑑𝑥
𝜅

= 0 (3.11) 

where 𝒏 = (𝑛1, 𝑛2) denote the unit outward normal vector. 

Consider the source problem corresponding to the eigenvalue problem (2.3) and its discrete mixed finite element 

form. 

Find (𝒑, 𝑞) ∈ 𝑯 × 𝑉, such that 

 {
𝑎(𝒑, 𝝉) + 𝑏(𝝉, 𝑞) = 0,    ∀𝝉 ∈ 𝑯

𝑏(𝒑, 𝑣) = −(𝑓, 𝑣),          ∀𝑣 ∈ 𝑉
  (3.12) 

Find (𝒑ℎ, 𝑞ℎ) ∈ 𝑯ℎ × 𝑉ℎ, such that 

 {
𝑎(𝒑ℎ, 𝝉ℎ) + 𝑏(𝝉ℎ , 𝑞ℎ) = 0,     ∀𝝉ℎ ∈ 𝑯ℎ

𝑏(𝒑ℎ, 𝑣ℎ) = −(𝑓, 𝑣ℎ),            ∀𝑣ℎ ∈ 𝑉ℎ
  (3.13) 

For the polygonal domain, it is known from [11] that the problem (3.12) has a unique solution, and the 

following regularity result holds: For 𝑓 ∈ 𝑉, ∀(𝒑, 𝑞) ∈ 𝐻𝑟(Ω)2 × [𝐻1+𝑟(Ω) ∩ 𝐻0
1+𝑟(Ω)], such that 

 ‖𝑞‖1+𝑟 + ‖𝒑‖𝑟 ≲ ‖𝑓‖0 ,      1 2⁄ < 𝑟 ≤ 1 (3.14) 

Assume that the mixed finite element spaces 𝑯ℎ ⊂ 𝑯 and 𝑉ℎ ⊂ 𝑉 satisfy the inf-sup condition, i.e., 

there exists a constant 𝛽 > 0 such that 

 𝑠𝑢𝑝
𝝉ℎ∈𝑯ℎ

𝑏(𝝉ℎ,𝑣ℎ)

‖𝝉ℎ‖𝑯
≥ 𝛽‖𝑣ℎ‖0,    ∀𝑣ℎ ∈ 𝑉ℎ (3.15) 

Then (3.13) also exists a unique solution (𝒑ℎ, 𝑞ℎ) ∈ 𝑯ℎ × 𝑉ℎ  and the following error estimate is valid (see 

[10][16]) 

 
‖𝒑 − 𝒑ℎ‖𝑯 + ‖𝑞 − 𝑞ℎ‖0 ≲ 𝑖𝑛𝑓

𝝉ℎ∈𝑯ℎ

‖𝒑 − 𝝉ℎ‖𝑯 + 𝑖𝑛𝑓
𝑣ℎ∈𝑉ℎ

‖𝑞 − 𝑣ℎ‖0 (3.16) 

Therefore, we define linear bounded operators 

𝑺: 𝐺 → 𝑯 ⊂ 𝐺                 𝑇: 𝐺 → 𝑉 ⊂ 𝐺 

𝑺ℎ: 𝐺 → 𝑯ℎ ⊂ 𝐺              𝑇ℎ: 𝐺 → 𝑉ℎ ⊂ 𝐺 

For 𝑓 ∈ 𝑉, ∀(𝑺𝑓, 𝑇𝑓) ∈ 𝑯 × 𝑉 such that 

 {
𝑎(𝑺𝑓, 𝝉) + 𝑏(𝝉, 𝑇𝑓) = 0,    ∀𝝉 ∈ 𝑯

𝑏(𝑺𝑓, 𝑣) = −(𝑓, 𝑣),            ∀𝑣 ∈ 𝑉
  (3.17) 

For 𝑓 ∈ 𝑉,  ∀(𝑺ℎ𝑓, 𝑇ℎ𝑓) ∈ 𝑯ℎ × 𝑉ℎ such that 
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 {
𝑎(𝑺ℎ𝑓, 𝝉ℎ) + 𝑏(𝝉ℎ , 𝑇ℎ𝑓) = 0,       ∀𝝉ℎ ∈ 𝑯ℎ

𝑏(𝑺ℎ𝑓, 𝑣ℎ) = −(𝑓, 𝑣ℎ),                ∀𝑣ℎ ∈ 𝑉ℎ
 (3.18) 

Thus, the problems (2.3) and (3.4) have equivalent operator forms, respectively 

 𝜆𝑇𝑢 = 𝑢,   𝑺(𝜆𝑢) = 𝝈 (3.19) 

 𝜆ℎ𝑇ℎ𝑢ℎ = 𝑢ℎ,   𝑺ℎ(𝜆ℎ𝑢ℎ) = 𝝈𝒉 (3.20) 

It’s easy to know 𝑇 and 𝑇ℎ are self-adjoint. Suppose that 𝜆 and 𝜆ℎ are the kth eigenvalue of (3.19) and (3.20), 

respectively, from (3.14), we can conclude that 𝑇 is completely continuous. 

The proof method similar to Theorem 3 in [12] can be used to prove the following lemma. 

Lemma 3.1.   Let (𝒑, 𝑞) and (𝒑ℎ, 𝑞ℎ) be the solutions of (3.12) and (3.13), respectively, then the following 

equation holds 

 
‖𝑞 − 𝑞ℎ‖0 = 𝑠𝑢𝑝

𝑑∈𝐺,𝑑≠0

1

‖𝑑‖0
(𝑏(𝝔 − 𝑸ℎ𝝔, 𝑞 − 𝑣ℎ) + 𝑎(𝒑 − 𝒑ℎ, 𝝔 − 𝑸ℎ𝝔)

+𝑏(𝒑 − 𝑸ℎ𝒑, 𝜗 − 𝑦ℎ)),                  ∀𝑣ℎ , 𝑦ℎ ∈ 𝑉ℎ

 (3.21) 

where, for any 𝑑 ∈ 𝐺, (𝝔, 𝜗) ∈ 𝑯 × 𝑉 is a general solution of (3.22): 

 {
𝑎(𝝕, 𝝔) + 𝑏(𝝕, 𝜗) = 0,    ∀𝝕 ∈ 𝑯

𝑏(𝝔, 𝑣) = −(𝑑, 𝑣),            ∀𝑣 ∈ 𝑉
 (3.22) 

For the above problem (3.22), there exists well-known regularity result ‖𝝔‖𝑟 + ‖𝜗‖1+𝑟 ≲ ‖𝑑‖0, where 1 2⁄ <

𝑟 ≤ 1. 

Theorem 3.1.   Under the conditions of Lemma 3.1, for any 𝑓 ∈ 𝑉, the following estimates hold 

 ‖𝑞 − 𝑞ℎ‖0 ≲ ℎ𝑚‖𝑞‖𝑚 + ℎ𝑟+𝑚‖𝒑‖𝑚 + ℎ𝑚+𝑚𝑖𝑛(𝑟,𝑘)‖𝑑𝑖𝑣𝒑‖𝑚−1,   1 ≤ 𝑚 ≤ 𝑘 + 1 (3.23) 

 ‖𝑞 − 𝑞ℎ‖0 ≲  ℎ1+𝑟‖𝑞‖1+𝑟 + ℎ1+𝑚𝑖𝑛(𝑟,𝑘)‖𝑓‖0 + ℎ2𝑟‖𝑓‖0 ,          1 2⁄ < 𝑟 ≤ 1. (3.24) 

Proof.  First, we estimate the first term 𝑏(𝝔 − 𝑸ℎ𝝔, 𝑞 − 𝑣ℎ) in the equation (3.21). There exists an operator 

Σℎ: 𝐻𝑚(Ω) → 𝑉ℎ such that for 𝑞 ∈ 𝐻𝑚(Ω), we have 

 ‖𝑞 − Σℎ𝑞‖0 ≲ ℎ𝑚‖𝑞‖𝑚,      1 ≤ 𝑚 ≤ 𝑘 + 1 (3.25) 

Therefore, using equation (3.25) and the definition of the interpolation operator 𝑸ℎ, we obtain the estimate as 

follow 

 

inf
𝑣ℎ∈𝑉ℎ

|𝑏(𝝔 − 𝑸ℎ𝝔, 𝑞 − 𝑣ℎ)| ≲ ‖𝑑𝑖𝑣(𝝔 − 𝑸ℎ𝝔)‖0 inf
𝑣ℎ∈𝑉ℎ

‖𝑞 − 𝑣ℎ‖0

≲ ‖𝑑𝑖𝑣𝝔‖0‖𝑞 − Σℎ𝑞‖0

≲ ‖𝑑𝑖𝑣𝝔‖0ℎ𝑚‖𝑞‖𝑚,    1 ≤ 𝑚 ≤ 𝑘 + 1

 (3.26) 

Next, we estimate the second term 𝑏(𝒑 − 𝑸ℎ𝒑, 𝜗 − 𝑦ℎ). Similar to equation (3.26), we have the following 

estimate for 1 ≤ 𝑚 ≤ 𝑘 + 1 

 
inf

𝑣ℎ∈𝑉ℎ

|𝑏(𝒑 − 𝑸ℎ𝒑, 𝜗 − 𝑦ℎ)| ≲ ‖𝑑𝑖𝑣(𝒑 − 𝑸ℎ𝒑)‖0‖𝜗 − Σℎ𝜗‖0

≲ ℎ𝑚−1‖𝑑𝑖𝑣𝒑‖𝑚−1ℎ1+𝑚𝑖𝑛 (𝑟,𝑘)‖𝜗‖1+𝑟

 (3.27) 

Finally, using the equation (2.15) in [12], the estimate for the last term 𝑎(𝒑 − 𝒑ℎ, 𝝔 − 𝑸ℎ𝝔) is as follows 

 
|𝑎(𝒑 − 𝒑ℎ, 𝝔 − 𝑸ℎ𝝔)| ≲ ‖𝒑 − 𝒑ℎ‖0‖𝝔 − 𝑸ℎ𝝔‖0

≲ ‖𝒑 − 𝑸ℎ𝒑‖0ℎ𝑟‖𝝔‖𝑟
 (3.28) 

Based on the above, we use the regularity result from the auxiliary problem (3.22), and by combining equations 

(3.26) - (3.28), then we can obtain the following estimate 

 

‖𝑞 − 𝑞ℎ‖0 = sup
𝑑∈𝐺

1

‖𝑑‖0
(𝑏(𝝔 − 𝑸ℎ𝝔, 𝑞 − 𝑣ℎ) + 𝑎(𝒑 − 𝒑ℎ, 𝝔 − 𝑸ℎ𝝔) + 𝑏(𝒑 − 𝑸ℎ𝒑, 𝜗 − 𝑦ℎ))

≲
1

‖𝑑‖0
(ℎ𝑚‖𝑑𝑖𝑣𝝔‖0‖𝑞‖𝑚 + ‖𝒑 − 𝑸ℎ𝒑‖0ℎ𝑟‖𝝔‖𝑟 + ℎ𝑚+𝑚𝑖𝑛 (𝑟,𝑘)‖𝑑𝑖𝑣𝒑‖𝑚−1‖𝜗‖1+𝑟)

≲
1

‖𝑑‖0
(ℎ𝑚‖𝑑‖0‖𝑞‖𝑚 + ‖𝒑 − 𝑸ℎ𝒑‖0ℎ𝑟‖𝝔‖𝑟 + ℎ𝑚+𝑚𝑖𝑛(𝑟,𝑘)‖𝑑𝑖𝑣𝒑‖𝑚−1‖𝜗‖1+𝑟)

≲ ℎ𝑚‖𝑞‖𝑚 + ℎ𝑟+𝑚‖𝒑‖𝑚 + ℎ𝑚+𝑚𝑖𝑛(𝑟,𝑘)‖𝑑𝑖𝑣𝒑‖𝑚−1,          1 ≤ 𝑚 ≤ 𝑘 + 1

 (3.29) 

Based on equation (3.29), we can also derive the following conclusion 

 ‖𝑞 − 𝑞ℎ‖0 ≲  ℎ1+𝑟‖𝑞‖1+𝑟 + ℎ1+𝑚𝑖𝑛(𝑟,𝑘)‖𝑓‖0 + ℎ2𝑟‖𝑓‖0 

From Theorem 3.1 and [17], we know the following prior error estimates: For any 𝑓 ∈ 𝑉, the following hold  
 ‖𝑺𝑓 − 𝑺ℎ𝑓‖0 ≲ ℎ𝑚‖𝑇𝑓‖𝑚+1,   1 ≤ 𝑚 ≤ 𝑘 + 1 (3.30) 

 ‖𝑇𝑓 − 𝑇ℎ𝑓‖0 ≲ ℎ𝑚‖𝑇𝑓‖𝑚+1,   1 ≤ 𝑚 ≤ 𝑘 + 1 (3.31) 

Therefore, from equations (3.30) and (3.31), the following convergence result holds (see [9],[19],[20]). 

 ‖𝑇 − 𝑇ℎ‖ℒ(𝑉,𝑉) → 0    if   ℎ → 0 (3.32) 
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 ‖𝑺 − 𝑺ℎ‖ℒ(𝑉,𝑯) → 0    if   ℎ → 0 (3.33) 

The results in equations (3.32) and (3.33) are equivalent to the convergence of eigenvalues and eigenfunctions. 

Therefore, using the abstract theory from [14][15], and a priori results in equations (3.30) and (3.31), we may 

draw the following conclusions. 

Lemma 3.1. Let (𝜆, 𝝈, 𝑢)  and (𝜆ℎ , 𝝈ℎ, 𝑢ℎ)  be the solutions to the eigenvalue problem (2.3) and (3.4), 

respectively, for 𝑢 ∈ 𝐻𝑚+1(Ω), such that the following priori error estimates hold 

 ‖𝝈 − 𝝈ℎ‖0 + ‖𝑢 − 𝑢ℎ‖0 ≲ ℎ𝑘+1, 𝑘 ≥ 0 (3.34) 

 𝜆 − 𝜆ℎ ≲ ℎ2𝑘+2, 𝑘 ≥ 0 (3.35) 

 

IV. A POSTERIORI ERROR ANALYSIS 
This section will present the posterior error estimator for the approximation of the feature pair 

(𝜆ℎ, 𝝈ℎ , 𝑢ℎ) and prove the reliability and effectiveness of this error estimator. First of all, we will provide some 

explanations of the tools and notations that will be used in the proof process. 

4.1. Technical tools 

Let ℰℎ = ∪
𝜅∈𝒯ℎ

ℰ(𝜅), where ℰ(𝜅) denotes the set of all edges in element 𝜅, and define 𝜔𝜅  and 𝜔𝑒  as 

follows: 

 𝜔𝜅 = ∪
ℰ(𝜅)∩ℰ(𝜅′)≠∅

𝜅′
  ,  𝜔𝑒 = ∪

𝑒∈ℰ(𝜅′)
𝜅′

 (4.1) 

for all edges 𝑒 ∈ ℰℎ , ℰℎ = ℰℎ
𝑖 ∪ ℰℎ

𝑏 , where ℰℎ
𝑖  denotes the internal edges and ℰℎ

𝑏  denotes the edges on the 

boundary 𝜕Ω, let 𝑒 = 𝜅+ ∩ 𝜅− be defined, and define the jump of the function 𝑣 on edge 𝑒 as: 

𝐽(𝑣)|𝑒 = (𝑣|𝜅+
)|

𝑒
− (𝑣|𝜅−

)|
𝑒
,   𝑒 ∈ ℰℎ

𝑖  

𝐽(𝑣)|𝑒 = (𝑣|𝜅)|𝑒,    𝑒 ∈ ℰℎ
𝑏  

Lemma 4.1.   Consider the Clément interpolation operator 𝛩ℎ: 𝐻1(Ω) → 𝑆1(𝒯ℎ), and define 𝑆1(𝒯ℎ) ⊂ 𝐻1(Ω) as 

the set of continuous piecewise affine functions, for any 𝑣 ∈ 𝐻0
1(Ω), it satisfies 

 ‖𝑣 − 𝛩ℎ𝑣‖0,𝜅 ≲ ℎ𝜅‖𝑣‖1,𝜔𝜅
 (4.2) 

 ‖𝑣 − 𝛩ℎ𝑣‖0,𝑒 ≲ ℎ𝑒
1 2⁄ ‖𝑣‖1,𝜔𝑒

 (4.3) 

Lemma 4.2.   For 𝜙, 𝝋 ∈ 𝐻1(Ω), the integration by parts formula gives 

 ∫ (𝝋 ⋅ 𝒄𝒖𝒓𝒍𝜙 + 𝜙 ⋅ 𝑟𝑜𝑡𝝋)𝑑𝑥
Ω

= ∫ 𝜙 ⋅ (𝝋 ⋅ 𝒕)𝑑𝑠
𝜕Ω

 (4.4) 

where 𝒕 = (−𝑛2, 𝑛1)𝑇 represents the unit outward tangent vector. 

Now, we introduce the mixed finite element eigenvalue expansion [21]. 

Lemma 4.3.   Assume (𝜆, 𝝈, 𝑢) ∈ 𝑅 × 𝑯 × 𝑉 be the solution to the eigenvalue problem (2.3), 0 ≠ 𝜇 ∈ 𝑉 and 

𝒘 ∈ 𝑯 satisfy 

 𝑎(𝒘, 𝒘) + 𝑏(𝒘, 𝜇) = 0 (4.5) 

Let us define 

 𝜆̂ =
𝑎(𝒘,𝒘)

𝑟(𝜇,𝜇)
 (4.6) 

Then, we have 

 𝜆̂ − 𝜆 =
−𝑎(𝒘−𝝈,𝒘−𝝈)−𝑏(𝒘−𝝈,𝜇−𝑢)

𝑟(𝜇,𝜇)
−

𝜆𝑟(𝜇−𝑢,𝜇−𝑢)

𝑟(𝜇,𝜇)
 (4.7) 

Proof.  It is calculated from equations (2.8) and (4.6) 

 

𝜆̂ − 𝜆 =
𝑎(𝒘,𝒘)−𝜆𝑟(𝜇,𝜇)

𝑟(𝜇,𝜇)

=
𝑎(𝒘−𝝈,𝒘−𝝈)+2𝑎(𝒘,𝝈)−𝑎(𝝈,𝝈)−𝜆𝑟(𝜇,𝜇)

𝑟(𝜇,𝜇)

=
𝑎(𝒘−𝝈,𝒘−𝝈)+2𝑎(𝒘,𝝈)−𝜆𝑟(𝑢,𝑢)−𝜆𝑟(𝜇,𝜇)

𝑟(𝜇,𝜇)

=
𝑎(𝒘−𝝈,𝒘−𝝈)+2𝑎(𝒘,𝝈)−2𝜆𝑟(𝜇,𝑢)−𝜆𝑟(𝜇−𝑢,𝜇−𝑢)

𝑟(𝜇,𝜇)

=
𝑎(𝒘−𝝈,𝒘−𝝈)+2𝑎(𝒘,𝝈)+2𝑏(𝝈,𝜇)

𝑟(𝜇,𝜇)
−

𝜆𝑟(𝜇−𝑢,𝜇−𝑢)

𝑟(𝜇,𝜇)

 (4.8) 

Using equations (2.3) and (4.5), we have 
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2𝑎(𝒘, 𝝈) + 2𝑏(𝝈, 𝜇) = 2[𝑎(𝒘, 𝝈) + 𝑏(𝝈, 𝜇) − 𝑎(𝒘, 𝒘) + 𝑏(𝒘, 𝜇)]

= −2𝑎(𝒘, 𝒘 − 𝝈) − 2𝑏(𝒘 − 𝝈, 𝜇)

= −2𝑎(𝒘 − 𝝈, 𝒘 − 𝝈) − 2𝑏(𝒘 − 𝝈, 𝜇 − 𝑢)

 (4.9) 

Finally, by combining equations (4.8) and (4.9), equation (4.7) can be obtained. 

Next, by Lemma 4.3, and in conjunction with equations (2.8) and (3.5), the following relationship 

between the eigenvalue error and the eigenfunction error can be obtained. 

Lemma 4.4.   Let (𝜆, 𝝈, 𝑢) ∈ 𝑅 × 𝑯 × 𝑉  be the solution to problem (2.3), and (𝜆ℎ , 𝝈ℎ, 𝑢ℎ) ∈ 𝑅 × 𝑯ℎ × 𝑉ℎ be 

the solution to the finite element approximation (3.4), then the following equation holds 

 |𝜆 − 𝜆ℎ|1 2⁄ ≲ ‖𝝈 − 𝝈ℎ‖𝑯 + ‖𝑢 − 𝑢ℎ‖0 (4.10) 

4.2. Local and global error indicators 

Define the local error indicator on each element 𝜅. 

 𝜂𝜅
2 = ℎ𝜅

2‖𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖0,𝜅
2 + ℎ𝜅

2‖𝑐−1𝝈ℎ − ∇𝑣ℎ‖0,𝜅
2 + ℎ𝑒‖𝐽(𝑐−1𝝈ℎ ⋅ 𝒕)‖0,𝑒

2  (4.11) 

The global error indicator is given by 

 𝜂ℎ = (∑  𝜅∈𝒯ℎ
𝜂𝜅

2 )
1 2⁄

 (4.12) 

Next, we will prove that this error estimate is reliable. 

4.3. The reliability of the eigenfunction estimator 

Theorem 4.1.   Let (𝜆, 𝝈, 𝑢) ∈ 𝑅 × 𝑯 × 𝑉 be the solution of problem (2.3), and (𝜆ℎ, 𝝈ℎ , 𝑢ℎ) ∈ 𝑅 × 𝑯ℎ × 𝑉ℎ be 

the solution of the finite element approximation (3.4), then we have 

 ‖𝝈 − 𝝈ℎ‖𝑯 + ‖𝑢 − 𝑢ℎ‖𝑉 ≲ 𝜂ℎ + ℎ. 𝑜. 𝑡 (4.13) 

where ℎ. 𝑜. 𝑡 = (∑ ℎ𝜅
2(|𝜆 − 𝜆ℎ|2 + ‖𝑢 − 𝑢ℎ‖0

2)𝜅∈𝒯ℎ
)

1 2⁄
 

For Theorem 4.1 above, we will prove it in the following two lemmas. 

Lemma 4.5.   The following estimate holds 

 ‖𝑐−1 2⁄ (𝝈 − 𝝈ℎ)‖
0,Ω

≲ (ℎ2‖𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖0,Ω
2 + ℎ‖𝐽(𝑐−1 2⁄ 𝝈ℎ ⋅ 𝒕)‖

0,ℰℎ

2
)

1 2⁄

+ ℎ. 𝑜. 𝑡 (4.14) 

where the definition of ℎ. 𝑜. 𝑡 can be found in Theorem 4.1. 

Proof.  Let 𝜌 ∈ 𝐻0
1(Ω), and consider the orthogonal Helmholtz decomposition of 𝑐−1𝝈ℎ 

 𝑑𝑖𝑣(𝑐 ⋅ ∇𝜌) = 𝑑𝑖𝑣𝝈ℎ (4.15) 

Then, there exists 𝛽 ∈ 𝐻1(Ω) such that ∫ 𝛽𝑑𝑥
Ω

= 0, 𝒄𝒖𝒓𝒍𝛽 ⊥ ∇𝐻0
1(Ω), and 

 𝝈ℎ = 𝑐 ⋅ ∇𝜌 + 𝒄𝒖𝒓𝒍𝛽 (4.16) 

From equation (2.2) and equation (4.16), we can obtain 

 𝝈 − 𝝈ℎ = 𝑐 ⋅ ∇𝒳 − 𝒄𝒖𝒓𝒍𝛽,  𝒳 = 𝑢 − 𝜌 ∈ 𝐻0
1(Ω) (4.17) 

Therefore, there is an error decomposition 

 
∫ 𝑐−1(𝝈 − 𝝈ℎ) ⋅ (𝝈 − 𝝈ℎ)𝑑𝑥

Ω
= ∫ (∇𝒳 − 𝑐−1𝒄𝒖𝒓𝒍𝛽) ⋅ (𝑐 ⋅ ∇𝒳 − 𝒄𝒖𝒓𝒍𝛽)𝑑𝑥

Ω

= ∫ (𝑐 ⋅ ∇𝒳) ⋅ ∇𝒳𝑑𝑥
Ω

+ ∫ (𝑐−1𝒄𝒖𝒓𝒍𝛽) ⋅ 𝒄𝒖𝒓𝒍𝛽𝑑𝑥
Ω

 (4.18) 

Firstly, we estimate the first term ∫ (𝑐 ⋅ ∇𝒳) ⋅ ∇𝒳𝑑𝑥
Ω

. Using integration by parts, equation (2.2), and 𝑑𝑖𝑣(𝝈 −

𝝈ℎ) ⊥ 𝑉ℎ, we can obtain that 

 

∫ (𝑐 ⋅ ∇𝒳)∇𝒳𝑑𝑥
Ω

= ∫ ∇𝒳 ⋅ (𝝈 − 𝝈ℎ)𝑑𝑥
Ω

+ ∫ ∇𝒳 ⋅ 𝒄𝒖𝒓𝒍𝛽𝑑𝑥
Ω

= ∫ ∇𝒳 ⋅ (𝝈 − 𝝈ℎ)𝑑𝑥
Ω

= − ∫ (𝒳 − 𝛱ℎ𝒳) ⋅ 𝑑𝑖𝑣(𝝈 − 𝝈ℎ)𝑑𝑥
Ω

≲ ℎ‖𝑑𝑖𝑣(𝝈 − 𝝈ℎ)‖0‖𝑐1 2⁄ ⋅ ∇𝒳‖
0

≲ ℎ‖𝜆ℎ𝑢ℎ − 𝜆𝑢‖0‖𝑐1 2⁄ ⋅ ∇𝒳‖
0

 (4.19) 

Next, we estimate the second term ∫ (𝑐−1𝒄𝒖𝒓𝒍𝛽) ⋅ 𝒄𝒖𝒓𝒍𝛽𝑑𝑥
Ω

. We use the Clément operator 𝛩ℎ, defined as 𝛽ℎ =

𝛩ℎ𝛽, which satisfies the properties 𝒄𝒖𝒓𝒍𝛽ℎ ⊥ ∇𝐻0
1(Ω) and 𝑑𝑖𝑣𝒄𝒖𝒓𝒍𝛽ℎ = 0. Then, based on equations (3.3), 

(4.17), (2.2), and (3.4), we obtain that 
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∫ (𝑐−1𝒄𝒖𝒓𝒍𝛽) ⋅ 𝒄𝒖𝒓𝒍𝛽ℎ𝑑𝑥
Ω

= − ∫ 𝑐−1(𝝈 − 𝝈ℎ) ⋅ 𝒄𝒖𝒓𝒍𝛽ℎ𝑑𝑥
Ω

+ ∫ ∇𝒳 ⋅ 𝒄𝒖𝒓𝒍𝛽ℎ𝑑𝑥
Ω

= − ∫ ∇(𝑢 − 𝑢ℎ) ⋅ 𝒄𝒖𝒓𝒍𝛽ℎ𝑑𝑥
Ω

= ∫ (𝑢 − 𝑢ℎ) ⋅ 𝑑𝑖𝑣𝒄𝒖𝒓𝒍𝛽ℎ𝑑𝑥
Ω

= 0

 (4.20) 

By Lemma 4.2, using equations (4.20) and (4.16), it can be derived that 

 

∫ (𝑐−1𝒄𝒖𝒓𝒍𝛽) ⋅ 𝒄𝒖𝒓𝒍𝛽𝑑𝑥
Ω

= ∫ (𝑐−1𝒄𝒖𝒓𝒍𝛽) ⋅ 𝒄𝒖𝒓𝒍(𝛽 − 𝛽ℎ)𝑑𝑥
Ω

= ∫ 𝑐−1𝝈ℎ ⋅ 𝒄𝒖𝒓𝒍(𝛽 − 𝛽ℎ)𝑑𝑥
Ω

− ∫ ∇𝜌 ⋅ 𝒄𝒖𝒓𝒍(𝛽 − 𝛽ℎ)𝑑𝑥
Ω

= ∫ 𝑐−1𝝈ℎ ⋅ 𝒄𝒖𝒓𝒍(𝛽 − 𝛽ℎ)𝑑𝑥
Ω

= − ∫ (𝛽 − 𝛽ℎ) ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)𝑑𝑥
Ω

+ ∫ 𝐽(𝑐−1𝝈ℎ ⋅ 𝒕) ⋅ (𝛽 − 𝛽ℎ)𝑑𝑠
ℰℎ

 (4.21) 

Based on equations (4.2) and (4.3), along with 𝛽ℎ = 𝛩ℎ𝛽, the following estimate can be obtained 

 ∫ (𝛽 − 𝛽ℎ) ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)𝑑𝑥
Ω

≲ ‖ℎ ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖0‖𝛽‖1 (4.22) 

 ∫ 𝐽(𝑐−1𝝈ℎ ⋅ 𝒕) ⋅ (𝛽 − 𝛽ℎ)𝑑𝑠
ℰℎ

≲ ‖ℎ1 2⁄ ⋅ 𝐽(𝑐−1𝝈ℎ ⋅ 𝒕)‖
0

‖𝛽‖1 (4.23) 

By Poincaré's inequality (equation (1.2)), we have 

 ‖𝛽‖1 ≲ ‖∇𝛽‖0 = ‖𝒄𝒖𝒓𝒍𝛽‖0 ≲ ‖𝑐−1 2⁄ 𝒄𝒖𝒓𝒍𝛽‖
0
 (4.24) 

Therefore, the following estimate can be obtained 

 ∫ (𝑐−1𝒄𝒖𝒓𝒍𝛽) ⋅ 𝒄𝒖𝒓𝒍𝛽𝑑𝑥
Ω

≲ ‖𝑐−1 2⁄ 𝒄𝒖𝒓𝒍𝛽‖
0

(‖ℎ1 2⁄ ⋅ 𝐽(𝑐−1𝝈ℎ ⋅ 𝒕)‖
0

+ ‖ℎ ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖0) (4.25) 

By equations (4.18), (4.19), and (4.25), along with 𝑑𝑖𝑣(𝝈 − 𝝈ℎ) = 𝜆ℎ𝑢ℎ − 𝜆𝑢, the following estimate can be 

derived 

 ‖𝑐−1 2⁄ (𝝈 − 𝝈ℎ)‖
0

≲ (ℎ2‖𝜆ℎ𝑢ℎ − 𝜆𝑢‖0,Ω
2 + ℎ2‖𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖0,Ω

2 + ℎ‖𝐽(𝑐−1 2⁄ 𝝈ℎ ⋅ 𝒕)‖
0,ℰℎ

2
)

1 2⁄
 (4.26) 

Finally, Lemma 4.5 is proven. 

Lemma 4.6.   The following estimate holds 

 ‖𝑢 − 𝑢ℎ‖0 ≲ (ℎ2‖𝑐−1𝝈ℎ − ∇𝑣ℎ‖0
2)1 2⁄ + ℎ. 𝑜. 𝑡 (4.27) 

where the definition of ℎ. 𝑜. 𝑡 can be found in Theorem 4.1. 

Proof.  There exists 𝜃 ∈ 𝐻0
1(Ω) such that 𝑑𝑖𝑣(𝑐 ⋅ ∇𝜃) = 𝑢 − 𝑢ℎ. By integration by parts, equations (2.2), (3.4), 

and (3.9), for any 𝑣ℎ ∈ 𝑉ℎ, we have 

 

‖𝑢 − 𝑢ℎ‖0
2 = ∫ (𝑢 − 𝑢ℎ) ⋅ 𝑑𝑖𝑣(𝑐 ⋅ ∇𝜃)𝑑𝑥

Ω

= ∫ 𝑢 ⋅ 𝑑𝑖𝑣(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

− ∫ 𝑢ℎ ⋅ 𝑑𝑖𝑣(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

= − ∫ ∇𝑢 ⋅ (𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

− ∫ 𝑢ℎ ⋅ 𝑑𝑖𝑣𝑸ℎ(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

    − ∫ 𝑢ℎ ⋅ 𝑑𝑖𝑣(𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

= − ∫ 𝝈 ⋅ ∇𝜃𝑑𝑥
Ω

+ ∫ (𝑐−1𝝈ℎ) ⋅ 𝑸ℎ(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

= − ∫ (𝝈 − 𝝈ℎ) ⋅ ∇𝜃𝑑𝑥
Ω

− ∫ (𝑐−1𝝈ℎ) ⋅ (𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

= ∫ 𝜃 ⋅ 𝑑𝑖𝑣(𝝈 − 𝝈ℎ)𝑑𝑥
Ω

+ ∫ (∇𝑣ℎ − 𝑐−1𝝈ℎ) ⋅ (𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

    − ∫ ∇𝑣ℎ ⋅ (𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

 (4.28) 

Let 𝜃ℎ = 𝛱ℎ𝜃, since ‖𝜃ℎ‖0 = ‖𝛱ℎ𝜃‖0 ≲ ‖𝜃‖0 is an infinitesimal, it follows from equations (2.2), (3.4), and 

(3.6) that 

 

∫ 𝜃 ⋅ 𝑑𝑖𝑣(𝝈 − 𝝈ℎ)𝑑𝑥
Ω

= ∫ (𝜃 − 𝛱ℎ𝜃) ⋅ 𝑑𝑖𝑣(𝝈 − 𝝈ℎ)𝑑𝑥
Ω

+ ∫ 𝜃ℎ ⋅ 𝑑𝑖𝑣(𝝈 − 𝝈ℎ)𝑑𝑥
Ω

≲ ‖∇𝜃‖0‖𝑑𝑖𝑣(𝝈 − 𝝈ℎ)‖0 + ‖𝜃‖0‖𝑑𝑖𝑣(𝝈 − 𝝈ℎ)‖0

≲ ‖∇𝜃‖0‖𝑑𝑖𝑣(𝝈 − 𝝈ℎ)‖0

 (4.29) 

Furthermore, the second term on the right-hand side of equation (4.28) can be estimated as 

 ∫ (∇𝑣ℎ − 𝑐−1𝝈ℎ) ⋅ (𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

≲ ‖ℎ(∇𝑣ℎ − 𝑐−1𝝈ℎ)‖0‖ℎ−1(𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃)‖0 (4.30) 

According to equation (3.10), we have 

 ‖ℎ−1(𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃)‖0 ≲ |𝑐 ⋅ ∇𝜃|1 ≲ ‖𝜃‖2 (4.31) 

Finally, using equations (3.9) and (3.11), the last term on the right-hand side of equation (4.28) can be estimated 

as 
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∫ ∇𝑣ℎ ⋅ (𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

= − ∫ 𝑣ℎ ⋅ 𝑑𝑖𝑣(𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃)𝑑𝑥
Ω

    + ∫ 𝑣ℎ ⋅ (𝐼𝑑 − 𝑸ℎ)(𝑐 ⋅ ∇𝜃) ⋅ 𝒏𝑑𝑠
𝜕Ω

= 0

 (4.32) 

In conclusion, by combining equations (4.28) to (4.32), we obtain 

 
‖𝑢 − 𝑢ℎ‖0

2 ≲ ‖𝑢 − 𝑢ℎ‖0(ℎ2‖(∇𝑣ℎ − 𝑐−1𝝈ℎ)‖0
2 + ℎ2‖𝑑𝑖𝑣(𝝈 − 𝝈ℎ)‖0

2)1 2⁄

≲ ‖𝑢 − 𝑢ℎ‖0(ℎ2‖(∇𝑣ℎ − 𝑐−1𝝈ℎ)‖0
2 + ℎ2‖𝜆ℎ𝑢ℎ − 𝜆𝑢‖0

2)1 2⁄
 (4.33) 

By simplifying, we can prove Lemma 4.6. 

From the prior estimates given by equations (3.34) and (3.35), we know that ‖𝜆ℎ𝑢ℎ − 𝜆𝑢‖0 is a higher-

order small term relative to ‖𝑢 − 𝑢ℎ‖0. Therefore, equation (4.13) tells us that the error estimate indicator is one 

of the upper bounds of the error estimate, and thus, it is reliable. 

4.4. The effectiveness of the eigenfunction estimator 

The following task is to prove the lower bound of the local error estimator. This lower bound is 

obtained based on the localization technique of bubble functions and inverse inequalities. 

We first introduce the bubble functions in two-dimensional space. Given 𝜅 ∈ 𝒯ℎ and 𝑒 ∈ ℰℎ, let 𝜓𝜅 be 

the standard element bubble function, and 𝜓𝑒 be the bubble function on the surface. By utilizing the bubble 

function technique developed by Verfürth [22], the following properties are satisfied: 

1. 𝜓𝜅 ∈ 𝒫3(𝜅), with 0 ≤ 𝜓𝜅 ≤ 1 = 𝑚𝑎𝑥 𝜓𝜅 in 𝜅, 𝜓𝜅 = 0 on ∂𝜅; 

2. 𝜓𝑒 ∈ 𝜔𝑒, with 0 ≤ 𝜓𝑒 ≤ 1 = 𝑚𝑎𝑥 𝜓𝑒 , ∀𝜅 ∈ 𝒯ℎ, 𝜅 ⊂ 𝜔𝐸, it satisfies 𝜓𝑒|𝜅 ∈ 𝒫2(𝜅). 

Lemma 4.7.   For any 𝜅 ∈ 𝒯ℎ and 𝑒 ∈ ℰℎ, the following equation holds 

 ‖𝑣‖0,𝜅 ≲ ‖𝜓𝜅
1 2⁄

𝑣‖
0,𝜅    ∀𝑣 ∈ 𝒫𝑘(𝜅) (4.34) 

 ‖𝜉‖0,𝑒 ≲ ‖𝜓𝑒
1 2⁄

𝜉‖
0,𝑒     ∀𝜉 ∈ 𝒫𝑘(𝑒) (4.35) 

For each 𝜓𝑒𝜉, there exists an extension factor ℬ: 𝒞(𝑒) → 𝒞(𝜔𝑒), where 𝒞(𝑒) and 𝒞(𝜔𝑒) are continuous function 

spaces defined on 𝑒 and 𝜔𝑒, respectively, such that ℬ𝜉|𝑒 = 𝜉, and 

 ℎ𝑒
1 2⁄ ‖𝜉‖0,𝑒 ≲ ‖𝜓𝑒

1 2⁄
⋅ ℬ𝜉‖

0,𝜔𝑒
≲ ℎ𝑒

1 2⁄ ‖𝜉‖0,𝑒 (4.36) 

Lemma 4.8.   Let (𝜆, 𝝈, 𝑢) ∈ 𝑅 × 𝑯 × 𝑉  be the solution of (2.3), and (𝜆ℎ, 𝝈ℎ, 𝑢ℎ) ∈ 𝑅 × 𝑯ℎ × 𝑉ℎ  be the 

solution of the finite element approximation (3.4), then we have the local lower bound as follows 

(i) For any 𝜅 ∈ 𝒯ℎ  and 𝛽, there holds 

 ℎ𝜅‖𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖0,𝜅 ≲ ‖𝑐−1 2⁄ 𝒄𝒖𝒓𝒍𝛽‖
0,𝜅

 (4.37) 

(ii) For any 𝜅 ∈ 𝒯ℎ, there holds 

 ℎ𝜅‖𝑐−1𝝈ℎ − ∇𝑢ℎ‖0,𝜅 ≲ ‖𝑢 − 𝑢ℎ‖0,𝜅 + ℎ𝜅‖𝑐−1 2⁄ (𝝈 − 𝝈ℎ)‖
0,𝜅

 (4.38) 

(iii) For any 𝑒 ∈ ℰℎ, there holds 

 ℎ𝑒
1 2⁄ ‖𝐽(𝑐−1𝝈ℎ ⋅ 𝒕)‖0,𝑒 ≲ ‖𝑐−1 2⁄ 𝒄𝒖𝒓𝒍𝛽‖

0,𝜔𝑒
 (4.39) 

Proof.  (i) Firstly, from equation (4.34), the following equation holds 

 ‖𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖0,𝜅
2 ≲ ‖𝜓𝜅

1 2⁄
⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖

0,𝜅

2
 (4.40) 

By integration by parts, we have 𝑟𝑜𝑡(𝑐−1𝝈ℎ) = −𝑟𝑜𝑡(𝑐−1(𝝈 − 𝝈ℎ)), and combining this with equation (4.17), 

we can deduce that 

 

‖𝜓𝜅
1 2⁄

⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖
0,𝜅

2
= − ∫ 𝜓𝜅 ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ) ⋅ 𝑟𝑜𝑡(𝑐−1(𝝈 − 𝝈ℎ))𝑑𝑥

𝜅

= ∫ (𝑐−1(𝝈 − 𝝈ℎ)) ⋅ 𝒄𝒖𝒓𝒍(𝜓𝜅 ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ))𝑑𝑥
𝜅

= ∫ (∇𝒳 − 𝑐−1𝒄𝒖𝒓𝒍𝛽) ⋅ 𝒄𝒖𝒓𝒍(𝜓𝜅 ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ))𝑑𝑥
𝜅

= − ∫ (𝑐−1𝒄𝒖𝒓𝒍𝛽) ⋅ 𝒄𝒖𝒓𝒍(𝜓𝜅 ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ))𝑑𝑥
𝜅

 (4.41) 

Since 𝜓𝜅 ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ) ∈ 𝒫𝑙+2 has zero boundary values on 𝜅, then we have 

 |𝜓𝜅 ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)|1,𝜅 ≲ ℎ𝜅
−1‖𝜓𝜅 ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖0,𝜅 (4.42) 

Finally, by applying the Cauchy-Schwarz inequality and using equations (4.40) to (4.42), we can derive that 

 ‖𝜓𝜅
1 2⁄

⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖
0,𝜅

≲ ℎ𝜅
−1‖𝑐−1 2⁄ 𝒄𝒖𝒓𝒍𝛽‖

0,𝜅
 (4.43) 

Thus, (i) is proven. 
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(ii) For any 𝜅 ∈ 𝒯ℎ, from equation (4.34), we have 

 ‖𝑐−1𝝈ℎ − ∇𝑢ℎ‖0,𝜅
2 ≲ ‖𝜓𝜅

1 2⁄
⋅ (𝑐−1𝝈ℎ − ∇𝑢ℎ)‖

0,𝜅

2
 (4.44) 

By using the integration by parts formula and 𝑐−1𝝈 = ∇𝑢, we can obtain 

 

‖𝜓𝜅
1 2⁄

⋅ (𝑐−1𝝈ℎ − ∇𝑢ℎ)‖
0,𝜅

2
= ∫ 𝜓𝜅 ⋅ (𝑐−1𝝈ℎ − ∇𝑢ℎ) ⋅ (𝑐−1𝝈ℎ − ∇𝑢ℎ)𝑑𝑥

𝜅

= ∫ 𝜓𝜅 ⋅ 𝑐−1𝝈ℎ ⋅ (𝑐−1𝝈ℎ − ∇𝑢ℎ)𝑑𝑥
𝜅

    − ∫ 𝜓𝜅 ⋅ ∇𝑢ℎ ⋅ (𝑐−1𝝈ℎ − ∇𝑢ℎ)𝑑𝑥
𝜅

= − ∫ 𝜓𝜅 ⋅ 𝑐−1(𝝈 − 𝝈ℎ) ⋅ (𝑐−1𝝈ℎ − ∇𝑢ℎ)𝑑𝑥
𝜅

    − ∫ (𝑢 − 𝑢ℎ) ⋅ 𝑑𝑖𝑣(𝜓𝜅(𝑐−1𝝈ℎ − ∇𝑢ℎ))𝑑𝑥
𝜅

≲ ‖𝑐−1(𝝈 − 𝝈ℎ)‖0,𝜅‖𝜓𝜅(𝑐−1𝝈ℎ − ∇𝑢ℎ)‖0,𝜅

    +‖𝑢 − 𝑢ℎ‖0,𝜅|𝜓𝜅(𝑐−1𝝈ℎ − ∇𝑢ℎ)|1,𝜅

 (4.45) 

Similar to equation (4.43), we can derive 

 |𝜓𝜅(𝑐−1𝝈ℎ − ∇𝑢ℎ)|1,𝜅 ≲ ℎ𝜅
−1‖𝜓𝜅(𝑐−1𝝈ℎ − ∇𝑢ℎ)‖0,𝜅 (4.46) 

Finally, from equations (4.45) and (4.46), we have 

 ‖𝜓𝜅
1 2⁄

⋅ (𝑐−1𝝈ℎ − ∇𝑢ℎ)‖
0,𝜅

≲ ‖𝑐−1 2⁄ (𝝈 − 𝝈ℎ)‖
0,𝜅

+ ℎ𝜅
−1‖𝑢 − 𝑢ℎ‖0,𝜅 (4.47) 

By combining equations (4.44) and (4.47), we can prove (ii). 

(iii) For any 𝑒 ∈ ℰℎ , let 𝛿 = 𝐽(𝑐−1𝝈ℎ ⋅ 𝒕)  be a polynomial of degree ≤ 𝑘  along the edge 𝑒 . By using the 

properties of the bubble function 𝜓𝑒, and combining with equation (4.35), we have 

 ‖𝛿‖0,𝑒
2 ≲ ‖𝜓𝑒

1 2⁄
𝛿‖

0,𝑒

2
= ∫ 𝜓𝑒𝛿 ⋅ 𝐽(𝑐−1𝝈ℎ ⋅ 𝒕)𝑑𝑠

𝑒
= − ∫ 𝜓𝑒 ⋅ ℬ𝛿 ⋅ 𝐽(𝑐−1(𝝈 − 𝝈ℎ) ⋅ 𝒕)𝑑𝑠

𝑒
 (4.48) 

By applying equation (4.4) to each element 𝜅, and combining with equation (4.17), we can obtain 

 

− ∫ 𝜓𝑒 ⋅ ℬ𝛿 ⋅ 𝐽(𝑐−1(𝝈 − 𝝈ℎ) ⋅ 𝒕)𝑑𝑠
𝑒

= − ∫ 𝑐−1(𝝈 − 𝝈ℎ) ⋅ 𝒄𝒖𝒓𝒍(𝜓𝑒 ⋅ ℬ𝛿)𝑑𝑥
𝜔𝑒

    − ∫ (𝜓𝑒 ⋅ ℬ𝛿) ⋅ 𝑟𝑜𝑡(𝑐−1(𝝈 − 𝝈ℎ))𝑑𝑥
𝜔𝑒

= ∫ 𝑐−1𝒄𝒖𝒓𝒍𝛽 ⋅ 𝒄𝒖𝒓𝒍(𝜓𝑒 ⋅ ℬ𝛿)𝑑𝑥
𝜔𝑒

    + ∫ (𝜓𝑒 ⋅ ℬ𝛿) ⋅ 𝑟𝑜𝑡(𝑐−1𝝈ℎ)𝑑𝑥
𝜔𝑒

≲ ‖𝑐−1𝒄𝒖𝒓𝒍𝛽‖0,𝜔𝑒
|𝜓𝑒 ⋅ ℬ𝛿|1,𝜔𝑒

    +‖𝜓𝑒 ⋅ ℬ𝛿‖0,𝜔𝑒
‖𝑟𝑜𝑡(𝑐−1𝝈ℎ)‖0,𝜔𝑒

 (4.49) 

From (i) and equation (4.36), we can deduce that 

 
− ∫ 𝜓𝑒 ⋅ ℬ𝛿 ⋅ 𝐽(𝑐−1(𝝈 − 𝝈ℎ) ⋅ 𝒕)𝑑𝑠

𝑒
≲ ‖𝑐−1𝒄𝒖𝒓𝒍𝛽‖0,𝜔𝑒

|𝜓𝑒 ⋅ ℬ𝛿|1,𝜔𝑒

    +ℎ𝑒
−1 2⁄ ‖𝛿‖0,𝑒‖𝑐−1 2⁄ 𝒄𝒖𝒓𝒍𝛽‖

0,𝜔𝑒

 (4.50) 

Since 𝜓𝑒 ⋅ ℬ𝛿 is an extension of polynomials, there is an inverse inequality (for details, refer to [23]) 

 |𝜓𝑒 ⋅ ℬ𝛿|1,𝜔𝑒
≲ ℎ𝑒

−1‖𝜓𝑒 ⋅ ℬ𝛿‖0,𝜔𝑒
 (4.51) 

By further using equation (4.36), we can obtain 

 |𝜓𝑒 ⋅ ℬ𝛿|1,𝜔𝑒
≲ ℎ𝑒

−1 2⁄ ‖𝛿‖0,𝑒 (4.52) 

Finally, by using equations (4.48), (4.50), and (4.52), we can deduce that 

 ‖𝛿‖0,𝑒 ≲ ℎ𝑒
−1 2⁄ ‖𝑐−1𝒄𝒖𝒓𝒍𝛽‖0,𝜔𝑒

 (4.53) 

Thus, we can obtain (iii). 

In conclusion, Lemma 4.8 is proved. 

Theorem 4.2.   Under the conditions of Lemma 4.8, the following estimate holds 

 𝜂ℎ = (∑ 𝜂𝜅
2

𝜅∈𝒯ℎ
)

1 2⁄
≲ ‖𝝈 − 𝝈ℎ‖𝑯 + ‖𝑢 − 𝑢ℎ‖𝑉 + ℎ. 𝑜. 𝑡 (4.54) 

where the definition of ℎ. 𝑜. 𝑡 can be found in Theorem 4.1. 

Proof. The proof follows directly from the definition of 𝜂𝜅 and Lemma 4.8. 

 

V. NUMERICAL EXAMPLE 
In this section, some numerical experiments will be presented to demonstrate the effectiveness of the 

method. Here we give the numerical results of the adaptive mixed finite element algorithm for the first eigenpair 

approximation with the parameter θ = 0.4. For problem (2.1), we consider three cases with 
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𝑐(𝑥) = 1, 𝑐(𝑥) =
1

1+(𝑥−1/2)2, and 𝑐(𝑥) =
1

1+𝑥2𝑦2. 

The corresponding numerical results are shown in the tables and figures. Additionally, the numerical examples 

in this paper were computed using MATLAB 2020b under the iFEM software package (see [18]). 

In the experiment, we consider two test domains: the L-shaped domain Ω𝐿 = (−1,1)2\(0,1) ×

−1,0) ,and the crack structure domain Ω𝑆𝐿 = (−1,1)2\{0 ≤ 𝑥 ≤ 1, 𝑦 = 0} . Since the exact eigenvalues are 

unknown, we select six sufficiently accurate approximate values as the reference for the numerical test. These 

reference eigenvalues are obtained as accurately as possible through adaptive computations. The specific results 

are as follows: 

 

TABLE.1. When 𝑐(𝑥) = 1, the numerical solution for the eigenvalues on the uniform grid regions 

Ω𝐿 ,Ω𝑆𝐿. 

𝑑𝑜𝑚𝑎𝑖𝑛 𝑟𝑒𝑓 𝑙 ℎ 𝑑𝑜𝑓 𝜆1 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 

Ω𝐿 9.6397238440 

13 1/4 3709 9.5807580032 0.0756736084 1.6008780762 

13 1/8 11699 9.6182024994 0.0249477925 1.8930641442 

13 1/16 47494 9.6342625921 0.0067168095 1.9587441726 

13 1/32 186429 9.6383032538 0.0017279146 2.0035999298 

13 1/64 752661 9.6393491891 0.0004309021 1.9837704971 

13 1/128 2995689 9.6396282237 0.0001089442  

𝑑𝑜𝑚𝑎𝑖𝑛 𝑟𝑒𝑓 𝑙 ℎ 𝑑𝑜𝑓 𝜆1 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 

Ω𝑆𝐿 8.3713297112 

12 1/4 3819 8.2679577933 0.1010843246 1.6621284915 

12 1/8 12978 8.3352881476 0.0319398801 1.7142243455 

12 1/16 48012 8.3601806892 0.0097342015 1.9483208464 

12 1/32 185924 8.3675732991 0.0025223034 1.9896648862 

12 1/64 740944 8.3699203051 0.0006351094 1.9948796783 

12 1/128 2966924 8.3707447047 0.0001593419  

 

TABLE.2. When 𝑐(𝑥) =
1

1+(𝑥−1/2)2, the numerical solution for the eigenvalues on the uniform grid regions 

Ω𝐿 ,Ω𝑆𝐿. 

𝑑𝑜𝑚𝑎𝑖𝑛 𝑟𝑒𝑓 𝑙 ℎ 𝑑𝑜𝑓 𝜆1 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 

Ω𝐿 5.3470894509 

13 1/4 4052 5.3061702130 0.0572259904 1.8241265963 

13 1/8 14443 5.3389337936 0.0161613076 1.8097851098 

13 1/16 49396 5.3445689769 0.0046097449 1.9465451641 

13 1/32 192894 5.3463499851 0.0011959373 1.9577700951 

13 1/64 769105 5.3469668467 0.0003078654 1.9782497080 

13 1/128 3040068 5.3471123190 0.0000781355  

𝑑𝑜𝑚𝑎𝑖𝑛 𝑟𝑒𝑓 𝑙 ℎ 𝑑𝑜𝑓 𝜆1 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 

Ω𝑆𝐿 4.7612704287 

13 1/4 3784 4.6904214480 0.0716820469 2.1060054485 

13 1/8 16118 4.7450729963 0.0166509719 1.7228447757 

13 1/16 56517 4.7562515902 0.0050444246 1.9750537357 

13 1/32 224885 4.7597952414 0.0012831021 1.9609715371 

13 1/64 898331 4.7609003213 0.0003295717 1.9581192698 

13 1/128 3561025 4.7612542907 0.0000848198  

 

TABLE.3. When 𝑐(𝑥) =
1

1+𝑥2𝑦2, the numerical solution for the eigenvalues on the uniform grid regions Ω𝐿 ,Ω𝑆𝐿. 

𝑑𝑜𝑚𝑎𝑖𝑛 𝑟𝑒𝑓 𝑙 ℎ 𝑑𝑜𝑓 𝜆1 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 

Ω𝐿 9.0569153630 

14 1/4 5666 9.0112319202 0.0618039421 1.5688891144 

14 1/8 17675 9.0426574110 0.0208321212 1.8799588051 

14 1/16 65154 9.0525628930 0.0056599097 1.9536618226 

14 1/32 256232 9.0558243736 0.0014611631 1.9795483080 

14 1/64 1032222 9.0567166714 0.0003705060 1.9758396980 

14 1/128 4116138 9.0569460689 0.0000941908  

𝑑𝑜𝑚𝑎𝑖𝑛 𝑟𝑒𝑓 𝑙 ℎ 𝑑𝑜𝑓 𝜆1 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 

Ω𝑆𝐿 7.8686199409 

13 1/4 4812 7.7848435143 0.0926331259 1.7346819229 

13 1/8 16791 7.8401260386 0.0278339619 1.8316428408 

13 1/16 64226 7.8597321697 0.0078197990 1.8611591162 

13 1/32 245248 7.8659188973 0.0021524391 1.9351071299 

13 1/64 979113 7.8678291729 0.0005628667 1.9763531233 

13 1/128 3907617 7.8685169952 0.0001430421  
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(a) (b) 

Figure.1. When 𝑐(𝑥) = 1 , the adaptive mesh and error curve plot on the initial grid 1/8 for the test domain Ω𝐿 . 

(a) Mesh after 25 iterations; (b) The error curve plot  

(a) (b) 

Figure.2. When 𝑐(𝑥) = 1 , the adaptive mesh and error curve plot on the initial grid 1/8 for the test domain Ω𝑆𝐿. 

(a) Mesh after 25 iterations; (b) The error curve plot 

(a) (b) 

Figure.3. When 𝑐(𝑥) =
1

1+(𝑥−1/2)2 , the adaptive mesh and error curve plot on the initial grid 1/8 for the test 

domain Ω𝐿  

(a) Mesh after 25 iterations; (b) The error curve plot  
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(a) (b) 

Figure.4. When 𝑐(𝑥) =
1

1+(𝑥−1/2)2 , the adaptive mesh and error curve plot on the initial grid 1/8 for the test 

domain Ω𝑆𝐿 

(a) Mesh after 25 iterations; (b) The error curve plot  

(a) (b) 

Figure.5. When 𝑐(𝑥) =
1

1+𝑥2𝑦2 , the adaptive mesh and error curve plot on the initial grid 1/8 for the test domain Ω𝐿 

(a) Mesh after 25 iterations; (b) The error curve plot  

(a) (b) 

Figure.6. When 𝑐(𝑥) =
1

1+𝑥2𝑦2 , the adaptive mesh and error curve plot on the initial grid 1/8 for the test domain Ω𝑆𝐿 

(a) Mesh after 25 iterations; (b) The error curve plot 
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VI. CONCLUSION  
We present the numerical solutions of the eigenvalues obtained through the adaptive algorithm in 

Tables.1 to 3, and show the adaptive meshes and error curves in the figures. From Fig.1 to 6, it can be observed 

that when 𝑐(𝑥) = 1, 𝑐(𝑥) =
1

1+(𝑥−1/2)2  , and 𝑐(𝑥) =
1

1+𝑥2𝑦2, the error curves are approximately parallel to a 

straight line with a slope of -1. The results indicate that the adaptive algorithm achieves optimal convergence 

order. Furthermore, the error curves also show that, for the same degrees of freedom, the approximations 

obtained by the adaptive algorithm are significantly more accurate than those obtained using a uniform grid. 
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