
International Journal of Engineering and Science Invention (IJESI)

ISSN (Online): 2319-6734, ISSN (Print): 2319-6726

www.ijesi.org ||Volume 13 Issue 12 December 2024 || PP 38-44

DOI: 10.35629/6734-13123844 www.ijesi.org 38 | Page

Enhancement of software quality by the use of various

software artefacts to remove code smells.

Indu1 and Nitika2
1M.Tech. Scholar, CBS Group of Institutions, Jhajjar, Haryana, India

2Assistant Professor, CBS Group of Institutions, Jhajjar, Haryana, India

indudahiya111@gmail.com1, nitika23@gmail.com2

ABSTRACT

Software Product Lines (SPL) are recognized as a successful approach to reuse in softwaredevelopment. Its

purpose is to reduce production costs. This approach allows products to bedifferent with respect of particular

characteristics and constraints in order to cover differentmarkets.SoftwareProductLine engineering

istheproductionprocessin product lines. Itexploits the commonalities betweensoftwareproducts, but

alsotopreserve theability to varythe functionality between these products. Sometimes, an inappropriate

implementation of SPLduring this process can conduct to code smells or code anomalies. Code smells are

consideredas problems in source code which can have an impact on the quality of the derived products

ofanSPL.Thesameproblem canbepresentinmanyderivedproducts fromanSPLduetoreuse.A possible solution to

this problem can be the refactoring which can improve the internalstructure of source code without altering

external behavior. This paper proposes an approachfor building SPL from source code. Its purpose is to reduce

code smells in the obtained SPLusing refactoring source code. Another part of the approach consists on

obtained SPL’s designbasedonreverseengineering.

KEYWORDS

Software ProductLine,Codesmells,Refactoring, Reverse Engineering.

I. INTRODUCTION
Software Product Line (SPL) is a family of related software systems with common and

variablefunctions whose first goal is reusability [1]. The SPL approach intends at upgrading

softwareproductivity and quality by relying on the similarity that exists among software systems, and

bymanaging a family of software systems in a reuse-based way. SPL aims to minimize effort andcost of

development and maintenance, to reduce time-to-market and to ameliorate quality ofsoftware [2], [3], [4].

Unsuitable development of a SPLs may give rise to bad

programmingpractices,calledcodeanomalies,alsoreferredintheliteratureas"codesmells"[5].

Code smell is often considered as key indicator of something wrong in the system code [5] orundesired

code source property.Like all software systems,artifacts of aSPLmay containsseveral code anomalies [6].

Therefore, if these code smells are not systematically removed, theSPL’s quality may degrade due to evolution.

Code Smells are very-known in classic and singlesoftware systems [7]. However, in the context of SPL, Code

Smell is a young topic. [8] proposeda specific SPL’s smell, called “Variability Smells”. [9] discussed two types

of bad smells

relatedonSPL:ArchitecturalBadSmellsandCodeBadSmells.[6]and[10]proposeddetectionstrategiesforanomaliesin

SPL.

 The main goal of this work is to propose a solution to reduce code smells in SPL. Unsuitabledevelopment

of a SPLs may give rise to bad practices such as architectural smells and codesmells. Our work tries to reduce

development problems through the source code analyze ofproduct variants to detect and correct code smells,

identify the variability and build the variabilitymodel of SPL. Detecting and refactoring code anomalies in

source code from the start give us achance to develop a SPL with a high quality. Thus, the reverse engineering is

a preliminarystrategyfora cleanSPLandtoobtainthe variabilitymodelof SPL.

This paper is organized as follow. Section 2 provides background on code smells, SPL andreverse engineering.

Section 3 presents the related work. Section 4 shows the proposed

approach.Thelastsectionconcludesandpresentsfuturework.

mailto:indudahiya111@gmail.com1

Enhancement of software quality by the use of various software artefacts to remove code smells.

DOI: 10.35629/6734-13123844 www.ijesi.org 39 | Page

II. BACKGROUND

2.1 Software Product Lines

 The evolution of software development and the growth of product numbers have motivated

theemergence of many reuse concepts. Software development communities recognize SPL as asuccessful

approach for reuse [11], [12]. This success results from the reduction of productioncosts and time to market.

SPL is a software development paradigm that share common feature tosatisfythespecificneedsof

particularmarketsegment[13].

Softwareproductline’sapproachfocusonthesharingofareferencearchitecturebetweenproducts.These

productscandifferandthe approachallowsthisvariationwithrespectofparticularcharacteristics and constraints. This

difference is the variability present in SPL, whichis the ability of a core asset to adapt to usages in the different

product contexts that are within theproduct line scope [14]. Variability must be anticipated and continuously

maintained to obtainwished results. The production process of product lines is well known as software product

lineengineering (SPLE) which tries to maximize the commonalities and reduce the cost of variations[15]. The

SPLE process focuses on two levels of engineering [14]: Domain Engineering (DE) andApplication Engineering

(AE). DE focuses on developing reusable artifacts which are used in AEtoconstructa

specificproduct.Fig.1presentstheSPLEprocess.

Figure1. DomainEngineeringandApplicationEngineering[14]

2.2 Codesmells

A software system evolves over time. Its evolution is one of the critical phases of the process ofits development.

Moreover, the software system changes, moreover the structure of the programdeteriorates. So, complexity

increases until it becomes more profitable to rewrite it from thescratch.Whichcaninvolvethreatsonthesoftware

quality.

Software system’s bad quality is a key indicator of existing bad programming practices,

alsoknownintheliteratureassourcecodeflaw,codesmellsorcodeanomalies[5].

Codesmellsareusuallysymptomsoflow-levelproblemssuchasanti-patterns.Theyareindicators of something wrong

that structures in the source code [5], their presence can affect

inmaintenanceandslowdownsoftwaredevelopment.

In literature, different Code Smells have been defined. For instance, in Fowler’s book [5], Beckdefine a list of

22 code smells, for example “Long Method” is a method that is too long and hastoo many responsibilities, so it

makes code hard to maintain, understand, change, extend, debugand reuse. “Large Class” is a class contains

many fields, methods or lines of code, means that aclass is trying to do too much.“Duplicated Code” has

negative impacts on software developmentand maintenance. For example, they increase bug occurrences: if an

instance of duplicate code ischanged in one part of the code for fixing bugs or adding new features, code may

require variouschanges in other parts all over the source code simultaneously; if the correspondents are

notchangedinadvertently,bugsarenewlyintroducedtothem[16].

Enhancement of software quality by the use of various software artefacts to remove code smells.

DOI: 10.35629/6734-13123844 www.ijesi.org 40 | Page

2.3 Reverse Engineering

Reverse Engineering is the process of analyzing a system. The purpose is to identify

systemstructure,itscomponentsandtherelationshipsbetweenthem[17].

Reverse Engineering can create representations of the system through transformations between orwithin

different abstraction levels. It can also extract design information from source code [17]andmaybeusedtore-

implementthesystem.

The reverse engineering process can be done through automated analysis or manual

annotations.Thenextstepsconcerntheidentificationofprogramstructureandtheestablishmentoftraceabilitymatrix.

2.4 Refactoring

Refactoring’s purpose is to improve the quality of an existing code [5]. This process tries throughthe software

system changing to improve its internal structure without having an impact on theexternalbehaviorof thecode.

Refactoring can be a solution for code smells. This process takes as input a source code withproblems and

outputs good ones. The resulting code can be reused. The refactoring allows thecode smells identification. Also,

it offers the possibility to change the original code

containingthesecodesmellsbycoderestructurationtogetanoutputcode withoutcodesmells.

III. RELATED WORK
Common industrial practices lead to the development of similar software products, then they areusually

managed to each other using simple techniques, e.g., copy-paste-modify. This is badpractice leading a low

software quality, as we mentioned above the “Duplicated Code” codesmell. During the past few years, several

studies have investigated two things: how to detect

codesmells[18],[19],[20],[21],[22],[23]andhowtocorrect[5],[18],[24]theminasingle

software. To the best of our knowledge we found few studies [6], [8], [9], [10], [25], [26] that

canbeconsideredrelatedtoourresearch.

[9]performed aSystematicLiterature Review (SLR)to find and classify publishedwork

aboutbadsmellsinthecontextofSPLandtheirrespectiverefactoringmethods.Theyclassified70differentbadsmellsdivi

dedinthreegroups:(i)CodeSmells;thataresymptomsofsomethingwronginthesourcecode,(ii)ArchitecturalSmells;tha

tareanindicationofprobleminhigherlevelsofabstractionand(iii)hybridSmells;thatareacombinationbetweenarchitect

uralsmelland code smells. [26] proposed a method to derive metric thresholds for software product

lines.Thegoalistodefinethresholdsvaluesthateachmetriccantakeinordertoidentifypotentialproblemsintheimplemen

tationoffeatures.Theyuse4softwaremetrics:LinesofCode(LOC)countsthenumberofuncommented

linesofcodeperclass.Thevalueofthismetricindicatesthesizeofaclass.CouplingbetweenObjects(CBO)countsthenum

berofclassescalledbyagivenclass.CBOmeasuresthedegreeofcouplingamongclasses.WeightMethodperClass(WM

C)countsthenumberofmethodsinaclass.Thismetriccanbeusedtoestimatethecomplexityofaclass.NumberofConstant

Refinements(NCR)countsthenumberofrefinementsthataconstanthas.Its

valueindicateshowcomplextherelationshipbetweenaconstantanditsfeaturesis.Theirstudyisbasedon33SPLswhichar

edividedintothreebenchmarksaccordingtotheirsizeintermsof Linesof Code(LOC).

Benchmark 1 includes all 33 SPLs. Benchmark 2 includes 22 SPLs with more than 300 LOC.Finally,

Benchmark 3 is composed of 14 SPLs with more than 1,000 LOC. The goal of creatingthree different

benchmarks is to analyze the results with varying levels of thresholds. In term ofthat they illustrate a detection

strategy to detect two types of code smells, God Class and

LazyClass.Figure2presentsthewaytoidentifyGodClassandLazyClass.

Enhancement of software quality by the use of various software artefacts to remove code smells.

DOI: 10.35629/6734-13123844 www.ijesi.org 41 | Page

Figure2.CodeSmellsidentification.

Apel et al. [8] proposed bad smell specific to SPLs called variability smell; that is an indicator

ofanexistingundesiredpropertyinallkindsof artifactsinanSPL,suchasfeaturemodels.

Fernandes and Figueiredo [6] investigated code anomalies in the context of SPLs, they proposenew detection

strategies for well-known anomalies in SPL such as God Class and God Method,ultimately they propose new

anomalies and their detection strategies and they propose supportingtoolfortheproposeddetection.

Enhancement of software quality by the use of various software artefacts to remove code smells.

DOI: 10.35629/6734-13123844 www.ijesi.org 42 | Page

De Andrade et al. [25] conducted an exploratory study that aims at characterizing

architecturalsmellsinthecontextofsoftwareproductline.

Abilio et al. [10] proposed means to detect three code smells (God Method, God Class, andShotgun Surgery) in

Feature-Oriented Programming source code, FOP is a specific technique todeal with the modularization of

features in SPL. They performed an exploratory study with eightSPLs developed with AHEAD; which is an

FOP language, to detect code smells in a SPL byusing 16 source code metrics. These metrics corresponds to the

detection of three code smellsmentionedabove.Table1presentssome ofthese metrics.

Table1.Metrics usedtodetectcodesmells [10]

Considering the discussed related work, we propose an approach aiming to develop an SPL

withminimalcodesmellsrisks.

IV. PROPOSEDAPPROACH
The main goals in our study are to (i) investigate the state of the art on code smells in the contextof SPLs as we

show above, (ii) propose a solution to decrease code smells in developing softwareproductlines.

Unsuitable development of a SPLs may give rise to bad practices such as architectural smells andcode smells

that induce maintenance and development costs problems. Therefore, we propose tobuild an SPL from the

scratch using reverse engineering methods, which can help us to detect

andcorrectcodesmellsfromthestart.Thus,wecanguarantee greatqualityof SPL.

The main challenge in this task is to analyze the source code of product variants in order to (i)detect and correct

code smells,(ii) identify the variability among the products,(iii) associatethem with features and (iiii) regroup the

features into a variability model. The proposed approachisobject-

orientedlanguageandonlyusesasinputthesourcecodeofproductvariants.

First of all, we use as input source code of product variants then we apply detection strategies forcode anomalies

as duplicated code, uncovered code by unit tests and too complex code, after thatwe correct them using an

automated bad smell correction technique based on the generation ofrefactoring concepts. Refactoring is a

change made to the internal structure of software to rewritethe code, to “clean it up”, to make it easier to

understand and cheaper to modify without changingits observable behavior [27].In step 2 and after having a

clean code, we are interested in thedetermination of the semantic relations between the names of the classes, the

names of themethods and the attributes of all the source codesof the existing products having

differentterminologies and not necessary having the same meaning. In term of that we are interested in

theharmonization of names, and more particularly in unifying fragments of source codes. Duringunification, we

determine the semantic correspondences between the source code elements

basedonsemanticknowledgebaseYAGO[28].

YAGO is a semantic knowledge base derived from many data sources like Wikipedia, WordNet,WikiData,

GeoNames, and other. Aside YAGO, we will base on Machine Learning methods toget better semantic

correspondences between source code elements. In fact, Machine Learningalgorithms can be helpful in the

classification of the features. Machine Learning proved hisefficiency in many complex domains like Predictive

Analytics [29], image processing [30], andsignal processing… At the end of this step, all names with a semantic

relationship would beharmonizedandcanbe furtheranalyzedinthe

nextstepofidentifyingcommonalitiesandvariability.Thus,we extractfeaturesby identification of common block

(CB) and variationblocks (VB). CB groups the elements present in all the products while VB groups the

elementspresent in certain products and not all of them. The role of these blocks is to group subsets

toimplementfeatures.Oncethecommonblockandthevariationblocksarecompleted,theextraction of mandatory

Enhancement of software quality by the use of various software artefacts to remove code smells.

DOI: 10.35629/6734-13123844 www.ijesi.org 43 | Page

elements and variation atomic blocks is supported, we associate them tofeatures.Once the common

propertiesand variability of productvariants are identified,thefeature model(s) will be constructed.Consequently,

we can obtain one ormore than one SPL.OurapproachispresentedinFigure3.

Figure3.ProposedApproach.

V. CONCLUSIONS

Softwarereuseisanimportantchallengeinsoftwareengineering.SoftwareProductLineisoneof the technique used to

ensure the success of this challenge. The obtained products can containreused parts or components. These parts

can include some problems in their source code moreknownasCodeSmells.Theseproblemscanpropagate

betweenthedifferentproducts.

A solution to avoid the Code smells in source code, is refactoring which can improve the internalstructure of

software system by trying to find the problem and avoid it using some restructurationtechniques.

In this paper, we try to present an approach which combines refactoring to eliminate code smellsand reverse

engineering to propagate modifications to the design level. Our purpose is to obtain asoftwareproductline

modelfreefromcodesmells.

Our future works will be the refinement of the different parts of the approach. Also, we

willchoosetheappropriatetoolstouseinourprototype.

REFERENCES
[1]. Lee, S.hyun. & Kim Mi Na, (2008) “This is my paper”, ABC Transactions on ECE, Vol. 10, No. 5,pp120-122.
[2]. Gizem, Aksahya & Ayese, Ozcan(2009)Coomunications & Networks,Network Books,ABCPublishers.

[3]. Rincón, L. F. et al., 2014. An ontological rule-based approach for analyzing dead and false optionalfeatures in feature models. In

Electronic Notes in Theoretical Computer Sciences, Vol. 302, pp 111–132.
[4]. Jacobson, I. et al., 1992. Object-oriented software engineering: a use case driven approach. Addison-Wesley,USA.

[5]. Xue, Y., 2011. Reengineering legacy software products into software product line based on automaticvariability analysis.

Proceedings of the 33rd International Conference on Software Engineering, NewYork,USA,pp. 1114–1117.
[6]. Ouali, S. et al., 2012. From Intentions to Software Design using an Intentional Software Product LineMeta-

Model.Proceedingofthe8thInternationalConferenceonInnovationsinInformationTechnology,AlAin, UAE.

[7]. Fowler, M., 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston,MA,USA.
[8]. Fernandes, E. and Figueiredo, E., 2017. Detecting Code Anomalies in Software Product Lines”.Proceedings of 7th Brazilian

Conference on Software: Theory and Practice, Maringa, Brazil, pp. 49–55.

[9]. Zhang, M. et al., 2011. Code Bad Smells: A Review of Current Knowledge. In Journal of
SoftwareMaintenanceandEvolution:ResearchandPractice,WileyOnlineLibrary,pp. 179-202.

[10]. Apel,S.etal.,2013.Feature-OrientedSoftwareProductLines:ConceptsandImplementation.Springer.

[11]. Vale, G. et al., 2014. Bad Smells in Software ProductLines:A Systematic Review.Proceedings ofthe 8th Brazilian Symposium on
Software Components, Architectures and Reuse (SBCARS), Brazil,pp. 84-94.

[12]. Abilio, R. et al., 2015. Detecting Code Smells in Software Product Lines-An Exploratory Study.Proceeding of the 12th International

Conference on Information Technology - New Generations, pp.433–438.
[13]. Ouali, S. et al., 2011. Framework for evolving software product line. In International Journal

ofSoftwareEngineering&Applications,Vol.2, No.2,pp. 34-51.

[14]. Weiss, D. M. and LAI, C. T. R., 1999. Software Product-Line Engineering: A Family-Based
SoftwareDevelopmentProcess.Addison-Wesley.

[15]. Pohl,K.andMetzger,A.,2006.SoftwareProductLinetesting.InCommunicationoftheACM,pp78-81.

[16]. Czarnecki,K.andEisenecker,W.,2000.GenerativeProgramming:Methods,Tools,andApplications.Addison-Wesley.

Enhancement of software quality by the use of various software artefacts to remove code smells.

DOI: 10.35629/6734-13123844 www.ijesi.org 44 | Page

[17]. Thiel,S.andHein,A.,2002.ModelingandUsingProductLineVariabilityinAutomotiveSystems.InIEEESoftwareVol.19, No.4, pp. 66-72.

[18]. Hotta,K.etal.,2012.AnEmpiricalStudyontheImpactofDuplicateCode.AdvancesinSoftwareEngineering.
[19]. Chikofsky,E.J.andCross,J.H.,1990.Reverseengineeringanddesignrecovery:Ataxonomy.INIEEESoftware,Vol.7, pp.13–17.

[20]. Moha, N. et al., 2010. DECOR: A Method for the Specification and Detection of Code and DesignSmells.Transactions

onSoftwareEngineering,Vol.36,No.1, pp.20-36.
[21]. Sjoberg, D. et al., 2013. Quantifying the effect of code smells on maintenance effort. SoftwareEngineeringIEEETransactions, Vol.

39,No.8, pp. 1144–1156.

[22]. Van Emden, E. and Moonen, L., 2002. Java quality assurance by detecting code smells.
ProceedingWorkingConf.ReverseEngineering,IEEEComputerSocietyPress,pp.97—107.

[23]. Marinescu, C. et al., 2005. Iplasma: An integrated platform for quality assessment of object-orienteddesign. Proceedings of the 21st

IEEE International Conference on Software Maintenance, Budapest,Hungary.
[24]. Liu, X. and Zhang, C., 2016. DT: a detection tool to automatically detect code smell in softwareproject.Proceedingsofthe4th

Int.Conf.Mach.Mater.Inf.Technol.Appl.,vol.71,pp.681–684.

[1] Fontana,F.etal.,2012.AutomaticDetectionofBadSmellsinCode:AnExperimentalAssessment.InJournalofObjectTechnology.
[2] Campbell,D. and Miller, M., 2008. Designing refactoring tools fordevelopers. Proceedings of

the2ndWorkshoponRefactoringTools,NewYork, NY,USA.

[3] De Andrade, H. S. et al., 2014. Architectural bad smells in software product lines. Proceedings of
the1stInternationalConferenceDependableSecur.CloudComput.Archit.,pp.1–6.

[4] Vale, G. and Figueiredo, E., 2015. A Method to Derive Metric Thresholds forSoftware

ProductLines.Proceedings29thBrazilianSymposiumonSoftwareEngineering, pp.110–119.

[5] Regulwar,G.B.andTugnayat,R.M.,2012.BadSmellingConceptinSoftwareRefactoring.InternationalProceedingsofEconomicsDevelop

mentandResearch,Vol.45,pp. 56–61.

[6] Rebele, T. et al., 2016. YAGO: a Multilingual Knowledge Base from Wikipedia, Wordnet, andGeonames.Proceedingofthe15th
InternationalSemanticWebConference,Kobe,Japan.

[7] Demsar, J. et al., 2004. Orange: From experimental machine learning to interactive data mining.Proceedings of the 8th European

Conference on Principles and Practice of Knowledge Discovery inDatabases,Pisa, Italy.
[8] Ebrahimi,K.S.etal.,2013.Combiningmodalityspecificdeepneuralnetworksforemotionrecognitioninvideo.Proceedings of the

15thACM onInternationalconference onmultimodalinteraction,Sydney,Australia.

