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ABSTRACT 
This study investigates the effect of variable viscosity and variable thermal conductivity on the classical plane 

Couette flow with viscous dissipation. The investigation concerns air, engine oil, and water, taking into account 

the variation of these quantities with temperature. The results are obtained with the direct numerical solution of 

the governing equations and cover large temperature differences. Velocity and temperature profiles are 

presented for equal or unequal plate temperatures in comparison with analytical solutions that are valid for constant 

properties. It is found that dynamic viscosity plays an important role in the results for all three fluids, where as 

the influence of thermal conductivity is more important in air. In many cases, velocity and temperature profiles 

depart significantly from those that correspond to constant properties. For equal plate temperatures, the difference 

between the variable properties’ Nusselt numbers and those corresponding to constant properties increases as 

the Brinkman number increases. For unequal plate temperatures, there is no clear trend, due to complicated 

interaction between the , ,u T  , and k . For water, the difference between the variable properties’ Nusselt 

numbers and those corresponding to constant properties is small, because water viscosity and thermal 

conductivity are weak functions of temperature. 
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I. Introduction 
The first viscous fluid flow treated in the classical book by White [1] is the steady flow between a fixed 

and a moving plate (Couette flow) and this is discussed in almost all fluid mechanics books, because this flow is 

the simplest in fluid mechanics. This flow is called Couette flow in honor of Maurice Couette [2], who 

performed experiments on the flow between a fixed and a moving concentric cylinder (White). It is known in 

physics that when a body moves along another body, heat is produced, due to friction. The same happens when 

a fluid flows: heat is produced, due to friction between the fluid particles. This heat is usually called viscous 

dissipation and is significant when fluid viscosity is large or fluid velocity is large or both. A variety of 

expressions are used in the literature for this quantity, such as viscous dissipation, viscous heating, viscous 

work, shear-stress heating, and frictional heating. Itis remarkable that in the Couette flow treated by White, the 

viscous dissipation has been taken into account. However, viscosity and thermal conductivity have been 
assumed constant. 

The investigation of viscous dissipation has been extended tomany fields of fluid mechanics and heat 

transfer. Hestroni et al. [3] presented a review of liquid and gas flows with viscous dissipation in microchannels. 

Attention was paid to comparison between predictions of theory and experimental data obtained during thelast 

decade. Probably the most recent work on boundary-layer flowwith viscous dissipation is that of Aydin and 

Kaya [4], who treated the mixed convection problem along a vertical flat plate of a viscous dissipating fluid. 

Barletta et al. [5] investigated the classical problem of the fully developed mixed convection flow with viscous 

dissipation in a vertical channel bounded by isothermal walls. Inporous media, the problem of viscous 

dissipation modeling is stillopen and controversial, as was shown by Nield et al. [6]. 

Viscous dissipation is important both from scientific and practical points of view. Laminar flows have 

a fatal weakness of poor resistance to high Reynolds numbers. Therefore, these flows pass to a transitional, 

unstable stage and change to turbulent when the Reynolds number exceeds some critical value. In recent 
years,extensive research has been conducted on stability of fluid flows andamong them is the plane Couette 

flow, due to its simplicity. However, in the stability of Couette flows, viscous dissipation and the variation of 

fluid properties with temperature are ignored. Duck et al. [7] were probably the first who conducted a linear 

stability analysis of Couette air flow that took into account the frictional heating and temperature-dependent 

viscosity. Hu and Zhong [8] extended the work of Duck et al. to higher Mach numbers. In both works, the lower 

plate was adiabatic and thermal conductivity was constant. From a scientific point of view, the plane Couette 
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flow with viscous dissipation and variable fluid properties is a very good basic flow for the application of 

stability analysis. 

Except that there are numerous physical phenomena for which viscous dissipation is important, as 

happens in glaciology, in interaction between the crust and the mantle, in separation of the oceanic crust from 

the lithosphere, and in rock avalanches. A typical coefficient of friction for one piece of rock sliding past 

another might be about 0 .55 . In large rock avalanches, however, the coefficient offriction necessary to explain 

the travel distance can be as low as 0 .1 . An explanation of this phenomenon can be given by assuming thatrock 

avalanches glide atop pockets of air trapped between rockpieces. In civil engineering structures, fluid dampers 

are used to suppress earthquake-and wind-induced vibrations. In these devices,energy is converted into heat 

through viscous dissipation (Makris 

[9]). High-pressure homogenization is a novel method for milktreatment in which significant heating of 

the milk is caused by frictional heating (Datta et al. [10]). In tribology, the oil temperaturerise becomes 

considerable, due to friction (Schlichting [11]), and the same result happens in aeronautics, in which the 

airtemperature rises up to 2 0 0 0
o
C  for Mach number 6 (Schlichting,[11]). 

The plane Couette flow with viscous dissipation has been studiedin the past, but usually with constant 

viscosity and thermalconductivity. The literature on this problem concerning fluids withvariable physical 

propertiesis scarce. In the present work, we treat, ina systematic way, the problem of plane Couette flow for air, 

engineoil, and water, taking into account the viscous dissipation and thevariation of both viscosity and thermal 

conductivity withtemperature. The temperature range is 1 5 0 3 0 0 0 K   for air, 2 7 3 4 3 0 K  for engine oil, 

and 2 7 3 3 7 3 K  for water. 

 

II. Mathematical Model 
The momentum equation for the fully developed plane Couette flow with variable viscosity is 

 0
u

y


  
 

  

           (1) 

where x  is the horizontal coordinate, y  is the vertical coordinate, u  is the velocity along the plates, and   is 

the fluid dynamic viscosity.The energy equation in general form is 

 

2

h h T u
u v k

x y y y y
 
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       (2) 

where is the fluid density, h  is the fluid enthalpy, T  is the fluid temperature, and k  is the fluid thermal 

conductivity. The temperature formulation of the energy equation is (Bejan [12]) 
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      (3) 

where 
P

c  is the fluid specific heat. The energy equation (3) is valid for both an ideal gas (like air) and an 

incompressible fluid (like water andoil) with zero internal heat generation and negligible compressibility effect 

(Bejan). For fully developed flow 0
T

v
x


 


, the preceding equation reduces to 

 

2
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T u

k
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        (4) 

The second term in the energy equation represents the viscousdissipation (heat due to friction).The boundary 
conditions at the two plates are 

1
0 , 0 ,y u T T            (5) 

2 2
, ,y b u u T T           (6) 

where 
1

T  is the temperature of the lower plate, 
2

T  is the temperature of the upper plate, 
2

u  is the velocity of 

the upper plate, and b  is the distance between the plates. 

In the present work, the Reynolds number is lower than 1500  (White [1]) and the flow is laminar. 

It should be noted here that the momentum and energy equations are coupled. Each of the four quantities 
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 , , ,  and  u T k  depends on the other three. For example, velocity depends on directly in the momentum 

equation; depends on T , because   is a function of temperature; and depends on k , because k  influences the 

temperature and this influence is transferred to velocity through viscosity .Thermal conductivity is a direct 

function of temperature T ; k  is influenced by velocity u, because velocity influences the temperature; and k  

is also influenced by viscosity, because viscosity influences u, u influences T , and T  influences k . 

Normal air is a transparent, nonparticipating fluid and the boundary conditions in the present problem are 

prescribed temperature at the plates. This means that the standard equations of motion and energy are valid 

(Ozisik [13]) and, for that reason, radiation has not been included in our analysis. 

In some special cases, Eqs. (1) and (4) may accept analytical solutions. In the present work, we solved these 

equations directly,without any transformation, using the finite difference method of Patankar [14]. The solution 

procedure starts with a known distribution of velocity and temperature at the channel entrance  0x   and 

marches along the plates. These profiles were used onlyto start the computations and their shape had no 

influence on theresults, which were taken far downstream. At the channel entrance, the temperature and velocity 

were taken uniformly, with a very smallvalue. At each downstream position, the discretized Eqs. (1) and (4)are 

solved using the tridiagonal matrix algorithm (TDMA). As x  increases, the successive velocity profiles become 

increasingly similar, and the same result happens with temperature profiles. The solution procedure stops at the 

point at which the successive velocityand successive temperature profiles become identical (fully developed 

flow, both hydrodynamically and thermally). The forward step size x  was 0 .0 1m m  with a total of 5 0 0  

lateral grid cells. The results are grid-independent. The parabolic solution procedure is a well-known solution 

method and has been used extensively in the literature. It appeared for the first time in 1970 

(Patankar and Spalding [15]) and has been included in classical fluid mechanics textbooks (White , [1]). In the 

solution procedure,   and k  have been considered as functions of temperature (White, [1]). 

The dimensionless velocity U , the dimensionless temperature,   and the dimensionless distance Y  are given 

by the following equations: 

 

2
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When the plate temperatures are equal  1 2
T T , the dimensionless  temperature is defined as  

 

r

T

T
             (10) 

where 
r

T  is the reference temperature 
 1 2

2
r

T T
T


 . The Nusselt numbers at the two plates are (Shah and 

London [17]): 
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where the bulk temperature is 
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For a fluid with constant properties, the temperature in the fluid isgiven by the following equation (analytical 

solution): 

  
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        (14) 

and the velocity is given by 
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y
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b
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          (15) 

Substituting temperature and velocity from Eqs. (14) and (15) into Eq. (13), we have the bulk temperature for a 

fluid with constant properties: 
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From Eq. (14), we can calculate the derivatives 
T

y




 at 0y   and y b . Taking into account that 

b
T  is also 

known, we can calculatethe Nusselt numbers for a fluid with constant properties: 
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where B rc  is the classical Brinkman number, defined as 

 

2

2

2 1

u
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k T T


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
          (19) 

In the present work, the preceding Brinkman number is unsuitable, because it becomes infinite when the plate 

temperatures are equal 
1 2

T T . For that reason, we used the following Brinkman number: 

 

2

2r

r r

u
B rc

k T


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where 
r

  is the reference fluid viscosity and 
r

k  is the reference thermal conductivity, both calculated at the 

reference temperature, where 
 1 2

2
r

T T
T


   

For equal plate temperatures and constant fluid properties, the Nusselt numbers take the values 
1

6N u    and 

2
6N u   ,respectively, whereas for constant fluid properties 

1 2
T T  and 0B rc  , the Nusselt numbers 

take the values 
1

1 .5N u    and 
2

3N u  , respectively. 

 

III. Results and Discussion 
A. Results for Air 

For air, the density, dynamic viscosity, and thermal conductivityare given by the following equations for 

150 3000K T K  (Zografos et al. [16]) 
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Fig. 1 Influence of air viscosity and thermal conductivity on the temperature profile for 36B r   (solid 

line, present work; dashed line, analytical solution). 

 

In Fig. 1, three temperature profiles are presented for plate temperatures equal to 150 K   and 

Brinkman number 3 6 . We see thatthe variation of viscosity and thermal conductivity plays an important role in 

the results. Our temperature profile with constant viscosity and constant thermal conductivity is not included in 

thefigure, because it is completely identical with the analytical solution and this is a validation test to see if our 

method gives accurate results (if our profile were included, the dashed line curve would disappear). 
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Fig. 2 Temperature and velocity distribution for air [solid line, present work with variable properties; 

dashed line, solution for a fluid with constant properties (analytical solution)]. 

 

In Fig. 2, velocity and temperature profiles are presented fordifferent plate temperatures. In the same 

figure, the results thatcorrespond to a fluid with constant properties (analytical solutions)have been included for 

comparison (dashed lines). The velocityprofiles for a fluid with constant properties are straight lines 
andindependent of the Brinkman number. From Figs. 2a and 2c, we see that air temperature increases as the 

Brinkman number increases. In Fig. 2a, results are shown for the maximum Brinkman number 2 5 6 , because 

for greater Brinkman numbers, the temperature rises above 3 0 0 0 K  and this temperature is outside the range 

for which Eqs. (22) and (23) are valid. For the same reason, the maximum Brinkman number in Fig. 2c is 16. 

For the case of equal plate temperatures  1 2
T T , the real air temperature is lower than that of 

constantproperties in the central region and greater than that of constantproperties in the region near the plates. 

The temperature profiles are symmetric when 
1 2

T T  and the same result happens with the corresponding 

velocity profiles, which take an S  form. In Fig. 2c (unequal plate temperatures), it is seen that for low 

Brinkman numbers, the real air temperature is greater than that of constant properties in the entire cross section, 

whereas for high Brinkman numbers, the real temperature is greater near the lower plate and smaller near the 

upper plate in comparison with constant properties temperatures. In Fig. 2d (unequal plate temperatures), it is 

seen thatas the Brinkman number increases, the velocity decreases. The explanation is given by viscosity. We 
know that air viscosity increases as temperature increases and decreases as temperature decreases. When the 

Brinkman number increases, the temperature increases, and this increase causes a rise in viscosity. Higher 

viscosity means lower velocity. (It is known in fluid mechanics that high viscosity hinders velocity and vice 

versa.) 
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Table 1 Nusselt numbers for air 

 
 

The Nusselt numbers calculated by the present method are shown in Table 1. In the same table, the Nusselt 

numbers for a fluid with constant properties). 

For  
1 2

T T , the difference between the variable properties’ Nusselt numbers and those corresponding to 

constant properties increases as the Brinkman number increases and vice versa. We see that as 0B r   the 

Nusselt numbers tend to 6  and 6 . However, for unequal plate temperatures, there is no clear trend, due to 

complicated interaction between the , ,u T  , and k . 
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B. Results for Engine Oil 

For engine oil, the density, dynamic viscosity, and thermal conductivity are given by the following equations for 

273 430K T K   (Zografos et al. [16]): 



The Effects of Variable Fluid Properties on Classical Plane Couette Flow With Viscous .. 

DOI: 10.35629/6734-1102012435                                 www.ijesi.org                                                       31 | Page 

 
Fig. 3 Influence of oil viscosity and thermal conductivity on the temperature profile for Br = 1 (solid line, 

present work; dashed line, analytical solution). 

 

The temperature profiles in Fig. 3 correspond to plate temperatures equal to 2 7 3 K  and Brinkman 

number 1. Our temperature profile with constant viscosity and constant thermal conductivity is again identical 

with the analytical solution and is not included in the figure. Here, we see that the role of thermal conductivity, 

in contrast to oil, is small. 
 

Table 2 Nusselt numbers for oil 
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Fig. 4 Temperature and velocity distribution for oil [solid line, present work with variable properties; 

dashed line, solution for a fluid with constant properties (analytical solution)]. 

 

In Fig. 4, temperature and velocity profiles are shown for different plate temperatures. In some profiles, 

there are points at which velocity or temperature show a small jump (discontinuity). Taking into account the 
preceding equations, we see that viscosity and thermal conductivity are given by different functions for 

273 430K T K  . These small jumps appear at the temperatures at which viscosity and conductivity 

functions change their form. For cases where 100B r   and 9 0 0  in Fig. 4a and for cases where 4B r   and 

1 2 .2 5  in Fig. 4c, the corresponding constant properties temperature profiles (analytical solutions, dashed lines) 

are not presented. The reason is that constant properties temperature profiles are very large; these profiles 

suppress the figure and, thus, the figure quality is very low. 
From Figs. 4a and 4c we see that oil temperature increases as the Brinkman number increases, and the 

real temperatures are lower than those of a fluid with constant properties in the entire cross section.The 

temperature profiles are symmetric when 
1 2

T T  and the same result happens with the corresponding velocity 

profiles, which areagain S-shaped. However, now the S  form is opposite from that of air. In Fig. 4d (unequal 

plate temperatures), it is seen that as the Brinkman number increases, the velocity increases, in contrast to what 

happens in air. The different behavior of oil velocity profiles in comparison with that of air is caused by oil 
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viscosity that increases as temperature decreases and vice versa. When the Brinkman number increases, the 

temperature increases, and this increase causes a fall inoil viscosity. Lower viscosity results in bigger velocity. 

We see also that velocity is very small (almost zero) near the lower (cold) plate.This is due to high oil viscosity 

near the cold plate. 

The conclusions drawn from Table 1 are also valid in Table 2. For 
1 2

T T , the difference between the variable 

properties’ Nusselt numbers and those corresponding to constant properties increases asthe Brinkman number 

increases and vice versa. However, for unequal plate temperatures, there is no clear trend, due to complicated 

interaction between the , ,u T  , and k . It is remarkable that for 
1 2

2 7 3 , 4 0 0T K T K  , and 1B r  , the 

2
N u   numbers have opposite signs. 

 

C. Results for Water 

For water, the density, dynamic viscosity, and thermal conductivity are given by the following equations for 

273 600K T K   (Zografos et al. [16]): 
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Fig. 5 Temperature and velocity distribution for water [solid line, present work with variable properties; 

dashed line, solution for a fluid with constant properties (analytical solution)]. 

 



The Effects of Variable Fluid Properties on Classical Plane Couette Flow With Viscous .. 

DOI: 10.35629/6734-1102012435                                 www.ijesi.org                                                       34 | Page 

Table 3 Nusselt numbers for water 

 
The results are shown in Fig. 5 and Table 3. For cases where 4B r   and 9  in Fig. 5a and for the case 

where 2 .25B r   in Fig. 5c, the corresponding profiles of analytical solutions are not presented, because these 

profiles suppress the figure. The results in Fig. 5 are qualitatively similar to those for oil, because the variation 

of viscosity with temperature in the two fluids is similar (viscosity increases as temperature decreases and vice 

versa). However, the viscosity-temperature relationship in oil is stronger than that of water and, for that reason, 

the oil results are more vigorous.Here, we see that the difference between the variable properties’ Nusselt 

numbers and those corresponding to constant properties issmall in comparison to the other two fluids. This 
happens because water viscosity and thermal conductivity are weak functions of temperature. For 

1 2
2 7 3 , 3 4 3T K T K  , and 1B r  , the 

2
N u  numbers again have opposite signs. 

 

IV. Conclusions 
The foregoing results are the first complete calculations of the effect of variable viscosity and variable 

thermal conductivity on the classical plane Couette flow with viscous dissipation and can be summarized as 

follows: 

1) The variation of viscosity with temperature plays an important role in the results. The variation of thermal 

conductivity is important in air and plays a small role in oil and water. 

2) For oil and water, the temperature increases as the Brinkman number increases, whereas in air, different 
behavior is observed inlow and high Brinkman numbers, as well as across the flow field. 

3) For equal plate temperatures, the velocity profiles have asymmetric S  form that is qualitatively similar in oil 

and water andreverse in air. 

4) For unequal plate temperatures, the velocity increases as the Brinkman number increases for oil and water, 

whereas the opposite happens in air. 

5) For 
1 2

T T , the difference between the variable properties’ Nusselt numbers and those corresponding to 

constant properties increases as the Brinkman number increases and vice versa. However, for unequal plate 

temperatures, there is no clear trend, dueto complicated interaction between the , ,u T  , and k . These findings 

are valid for air and oil. 

6) For water, the difference between the variable properties’ Nusselt numbers and those corresponding to 

constant properties issmall, because water viscosity and thermal conductivity are weak functions of temperature. 
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