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ABSTRACT : Biogeography Based Optimization (BBO) is a nature inspired meta-heuristic algorithm based 

on the geographical distribution of species between the habitats, which uses the idea of the migration and 

mutation strategy of species for solving complex optimization problems. In BBO, adaptation of the 

intensification and diversification for solving various optimization problems is a novel challenging task. 

Migration and mutation operators are two imperative features largely affect the performance and 

computational efficiency in BBO, which maintains both exploration and population diversity of the habitats. In 

this paper, a novel BBO algorithm is proposed, which inherit the features from a nearest neighbor of the local 

best individual to be migrated to the globally best individual of the pool with improved migration and mutation 

operator based on chaotic maps and we name it as “Chaos based locally and Globally Tuned BBO 

(CLGBBO)”. We have approved a widespread numerical estimation based on ten benchmark functions to 

quantify the efficiency of the proposed method. The investigational study confirms that CLGBBO is recovered 

than other variation of BBO algorithms in terms of exactness and convergence time to locate the global optimal 

solution. 
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I. INTRODUCTION  
Engineers are learning from the nature. Nature provide them novel idea that how to solve real world 

complex problems. The real world complex optimization problems are a challenging assignment for engineers 

as well as the economists. There are near about more than 134 powerful nature inspired evolutionary algorithms 

(EAs) [1] have been introduced. Some well-established and commonly used EAs are Genetic Algorithm (GA) 

[2], Particle Swarm Optimization (PSO)[3], Ant Colony Optimization (ACO)[4], and differential evolution 

(DE)[5]. Each of these methods has its own characteristics, strengths, and weaknesses. Population diversity and 

slow convergence speed are major problems in nature inspired optimization algorithms. In 2008 [6],Simon 

introduced a novel meta-heuristic evolutionary model based on the theory of island biogeography known as 

Biogeography-based optimization (BBO) algorithm has deals with the migration, speciation, and extinction of 

the species in a habitat. BBO’s capability of solving complex optimization problem is similar to other EAs. But, 

for improving its strength to solving optimization problem relative to other heuristic techniques, it is require 

modifying the original BBO. There is no such algorithm that performs well in all the fields of optimization “No 

free-lunch theorem” [7]. 

 

In BBO, a global optimum solution is based on Habitat Suitability Index (HSI) that can share their 

features with poor habitat. Migration operators mimic species migration among islands, which provides a 

recombination way for candidate solutions to interact with each other so that the properties of the population can 

be improved by keeping the best solutions from previous generation. That can be achieved only by migrating 

Suitability Index Variables (SIVs) from emigrating habitats to immigrating habitats. In BBO mutation, an SIVs 

in each habitat is randomly and probabilistically replaced by a new feature generated in the entire solution 

space, which tends to increase population diversity. The original BBO is based on linear migration and mutation 

models [8], way to perk up algorithms’ performance several other popular novel BBO models are introduced. 

Motivated by the migration and mutation mechanism of ecosystems and its mathematical model, various 

extension to BBO are planned for achieving information sharing by species.  
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In this paper, we propose a novel CLGBBO technique compare with LGBBO, which is proposed by 

Giri et al. [9], using chaotic migration and mutation operator for enhancing the performance with other variation 

of BBO approaches. The migration operator combines the features from a locally best nearest neighborhood of 

the individual to be migrated with globally best individual of the pool. And to improve the population diversity 

we use novel non-linear mutation operators such as Cauchy mutation operator with chaotic map. Thereby, the 

CLGBBO mimic the species distribution under local best and global best optimum solution, and thus achieves a 

much better balance between exploration (global search) and exploitation (local search). A set of 10 benchmarks 

functions is employed in numerical simulations of the proposed work and the results confirm their feasibility 

and effectiveness. Experiments on a set of well-known benchmark problems show that CLGBBO is highly 

competitive with canonical BBO, blended BBO (BBBO) and locally and globally Tuned BBO (LGBBO).  

 

The rest of the paper is organized as follows: In Section 2, the overview of BBO and its improvements 

have been summarized. In section 3, a brief review of modified BBO algorithm and its variants are discussed. 

The proposed new CLGBBO algorithm has been discussed in section 4. Simulation studies for various 

numerical benchmarks are employed to test the proposed migration and mutation operators and the results are 

compared with previous work is in Section 5. In Section 6, the conclusions and future research directions are 

discussed.  

 

II. LITERATURE REVIEW  
The knowledge of biogeography can be traced back to the work of nineteenth century by naturalists 

such as Darwin and Wallace [10]. In the early 1960s, MacArthur and Wilson begin working together on 

mathematical models of biogeography, the work culminating with the classic 1967 work “The Theory of Island 

Biogeography” [11]. Their concentration was primarily observant on the distribution of biological species 

surrounded by neighboring islands along with geo-temporal revolution. They were attracted in mathematical 

models of biogeography describe speciation (the evolution of new species), the migration of species (animals, 

fish, birds, or insects) between islands, and the extinction of species. BBO algorithm starts with some candidate 

solutions are called habitats. Habitats with a high HSI can support many species, whereas low HSI habitats 

support only a few species. Low HSI habitats can improve their HSI by accepting new features from more 

attractive habitats in the adaptation process. BBO mainly uses the idea of probabilistically sharing features 

(migration operator) between solutions based on the fitness values. The exploitation ability of BBO is good as 

migration operator can efficiently share the information between solutions. BBO shares information between its 

solutions just like GA and PSO. Like PSO, in BBO, solutions continue from one generation to next; but in GA, 

solutions “die” at the end of each generation. BBO does not use reproduction strategies like GA and ES. Thus 

BBO migration is used to change the solutions directly, while in PSO, velocity modulation is used to change the 

solutions. In BBO, migration operator creates similar habitats, which decrease the diversity of the algorithm. 

BBO also uses simple random mutation mechanism to increase the exploration ability of the algorithm.  

 

2.1  MIGRATION 

In BBO, the migration approach is similar to the crossover operator in other evolutionary strategy in 

which more than one parents can contributes to a single offspring. It is a probabilistic operator that adjusts each 

habitat Hi by taking SIVs from a higher HSI habitat. In [6], Simon proposed a linear migration model which is 

expressed in Eq. (1). Each habitat has its own emigration rate (µ) and immigration rate (λ) to define the 

migration rate for next generation. The migration rates are directly related to the number of species in a habitat. 

Thus the migration process increases the diversity of the habitat and contributes the likelihood of which 

information to be shared between the species. The emigration and immigration rates can be calculated in Eq. (2) 

as follows when there are k species in the habitat. 
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Hi(SIV) ← Hj(SIV)                                 (1) 

 µk = 
Ek

Smax
  and λk= I (1- µk)                                                                   (2) 

where, E is the maximum emigration rate, and I is the maximum immigration rate, and  Smax is the largest 

achievable number of species that the habitat can support.  

 

H. Ma [8] proposed six migration models, which are three linear migration models (including the 

constant immigration and linear emigration model, linear immigration and constant emigration model, and linear 

migration model) and three nonlinear migration models (including the trapezoidal migration model, quadratic 

migration model, and sinusoidal migration model). W. Guo et al.[12] investigate the models’ performances in a 

mathematical way, non-linear migration models perform better than linear migration models. Comparison 

results show that the sinusoidal migration model is the best of these models. The sinusoidal migration model for 

the ith habitat (Hi) can be calculated as in Eq.(3). 

 

λi =
I

2
 1 + cos  

iπ

Smax
     and   μ

i
=

E

2
 1 − cos(

iπ

Smax
)                           (3) 

2.2 MUTATION 

B. Hastings [13] pointed out, natural disaster can destroy the equilibrium and that events leads to 

severe change in the HSI and also cause a species count to differ from its equilibrium value. After migration 

process, the mutation operator is used to increase the diversity of the population to get better solutions. It is also 

a probabilistic operator which is used for modifying one or more randomly selected SIV of a solution based on 

mutation rate mi in Eq. (4) is calculated using priori probability of existence Pi. Therefore, mutation probability 

and solution probability are proportioned inversely.  

mi =Mmax 1 −
pi

pmax
           (4) 

where Mmax are user-defined parameter of maximum mutation rate, and Pmax is the maximum probability of 

species count. 

W. Gong [14] proposed new modified mutation operators such as Gaussian, Cauchy, and L´evy 

mutation operators was integrated with BBO to enhance the exploration ability of BBO for use in real space. 

Thus the improved Gaussian mutation operator using probability density function of the Gaussian distribution 

can defined in Eq.(5) as 

Hi(SIV)  Hi(SIV) + N(0, 1)                     (5) 

To avoid the potential weakness lying in different mutation mechanism, Gong introduced Cauchy 

mutation operator to enhance the exploration ability of BBO, the probability density function of Cauchy 

distribution can be described in Eq.(6) as  

           f x; 0,1 =
1

π(1+x2)
                  (6) 

Then, the Cauchy mutation model is expressed in Eq.(7) as follows: 

   Hi SIV ← Min Hi SIV  +  Max(Hi SIV ) − Min Hi SIV   × π × f Hi SIV ; 0,1        (7) 

where Hi(SIV) is the i
th

 habitat and f Hi SIV ; 0,1 indicates that a Cauchy distribution.  

 

2.3 CANONICAL BBO 

In BBO, the initial populations are not discarded in different generations. Therefore the migration and 

mutation models are use to modify the population in each generation and the fitness function is worn to 

determine the λ and µ rates instead of modifying the population directly. Simon uses linear migration model, it 
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means that λ and µ are linear functions of solution fitness and is normalized to the range [0, 1]. The pseudo-code 

of canonical BBO is given in Algorithm 1. 

 

 

Algorithm 1: Pseudo-code of canonical BBO 

 
Setting the parameters E= I=1, mmax=1, Np and Max_iter 

Create a random set of habitats (populations) H1, H2, …., HNp 

Compute HSI (fitness) value for each habitat 

While the halting criteria is not satisfied Do 

    Compute λi, µi, pmut and mi for each habitat 

    Generate a rand ϵ (0, 1) //Migration  

    For each habitat from best to worst according to their HSI values 

           Select habitat Hi(SIV) probabilistically α λi  

           If rand <  λi and Hi(SIV) selected, then 

              Select habitat Hj(SIV) probabilistically α µj 

              If rand <  µj and Hj(SIV) selected, then  

                  Hi(SIV)Hj(SIV) 

              end  

           end 

     end //Mutation 

     Select Hi(SIV) based on mutation probability proportional pi 

     If rand < mi then 

        Randomly replace the SIVs in Hi(SIV ) 

     end 
      Compute HSI value 

 end 

 
III. VARIANTS OF BBO 

After BBO, Ma et al. [15] proposed blended migration operator (BBBO), which is expressed in Eq.(8) 

as 

                 Hi(SIV) α Hi(SIV)+(1-α)Hj(SIV)                                                                                             (8) 

where α in [0,1] is a random or deterministic value. They investigates the setting of α in an experimental work 

for test results performs better than a large or a small value of α, say α = 0.0 and 0.8, respectively. 

 

X. Li et al. [16] suggested multi-operator BBO (MOBBO) using sinusoidal migration and Gaussian 

mutation to improve its exploration ability and the diversity of population. P. Giri et al. [9] proposed novel BBO 

model of local best habitat from predefined size of neighborhood and a global best is explored to uncover the 

global optimal solution. The model is presented in Eq. (9) as: 

 

Hi(SIV)ηNN(Hi(SIV))+(1-η)Hj(SIV)                       (9) 

 

The nearest neighbor of habitat NN(Hi(SIV)) can be defined in Eq.(10) as  

 

NN(Hi(SIV))H(i<=r?1:i-r)(SIV)                                                                                                        (10) 

 

where, r is the radius of neighborhood. Since the HSIs are sorted in manner, so the best nearest neighbor habitat 

can be found at (i-r).When i<=r then the best habitat has been chosen as the locally best. To maintain proper 

population diversity and improve the performance of BBO, several scholars have developed different kinds of 

BBO models, which are discussed in table 1. 
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In this paper we are taking only original BBO, Blended BBO and LGBBO for comparisons with 

CLGBBO algorithm with three chaotic maps.  

 

 

 

 

Table 1: Different modified migration models in BBO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 CHAOTIC MAP 

From the literature, majority of nature inspired meta-heuristic algorithms uses uniform or Gaussian 

distribution as randomness. In principle, it can be beneficial to change such randomness by chaotic maps 

because chaos can have very similar properties of randomness with better statistical and dynamical properties 

[17]. Thus the optimization algorithms using chaotic maps to replace value of random variables are called 

chaotic optimization (CO). There are many approaches to improve exploration and exploitation such as random 

walks, local searches, and convergence accuracy. Chaotic maps refers to the study of nonlinear dynamic system 

that highly sensible to their initial conditions. That means small changes in initial conditions effect high changes 

in the final outcome of the system. One might think that chaos systems behave randomly, but a system does not 

necessarily need randomness for providing chaos behaviour for improving the performance of heuristic 

optimization algorithms.  

 

B. Atlas et al.[19], applied twelve chaotic maps to PSO and showed that chaos is able to improve the 

performance of Artificial Bee Colony optimization (ABC). Gandomi et al.[20], proposed a chaos-enhanced 

version of accelerated particle swarm optimization. Some of other chaos-enhanced heuristic algorithms are 

chaotic GA [18], chaotic harmony search [20], chaotic ACO [21], chaotic bee colony [22] and chaotic Firefly 

Algorithm [23]. S. Saremi et al.,[28] introduced chaotic BBO (CBBO) applying three different chaotic maps 

such as Circle, Sine, and Sinusoidal on improving the performance of BBO are investigated in terms of local 

optima avoidance and convergence speed. W. Zhu and H. Duan [24] proposed a novel Chaotic Predator Prey 

Biogeography-Based Optimization (CPPBBO) approach for solving the path planning problems of Uninhabited 

Combat Air Vehicle (UCAV). Q. Zhang et al.[25] describes a novel chaotic biogeography-based optimization 

(CBBO) algorithm for target detection by means of template matching to meet the request of unmanned aerial 

vehicle (UAV) surveillance. 

Table 2: Chaotic Maps [26] 

Name Chaotic Map Range Parameters  

Name of 

the 

Models 

The Improved BBO Models Citation 

BBBO Hi(SIV )  (1 − α)Hj (SIV ) + αHi(SIV ) 

 

Ma et al.[16] 

DE/BBO 𝐻𝑖 𝑆𝐼𝑉 ← 𝐻𝑗  𝑆𝐼𝑉 + 𝜌 ∗  𝐻𝑘 𝑆𝐼𝑉 − 𝐻𝑙 𝑆𝐼𝑉   Gong et al.[15] 

MOBBO Hi,1(SIV) Ha(SIV)+ β(Hb(SIV)−Hc(SIV)) 

Hi,2(SIV) Hb(SIV)+β(Hc(SIV)−Ha(SIV)) 

Hi,3(SIV) Hc(SIV)+β(Ha(SIV)−Hb(SIV)) 

Li et al. [31] 

MBBO Hi(SIV)  Hj(SIV)+ α (Hr(SIV)-Hi(SIV)) Farswan.et al.[29] 

PBBO Hi(SIV )  Hi(SIV ) + ϕ(Hi(SIV ) − Ht(SIV )) Li et al. [29] 

OBBO Ho,i(SIV )  Min + Max – Hi(SIV ) Ergezer et al. [28] 

QOBBO OHi(SIV ) Hi(SIV ) + α ∗ (Median − Hi(SIV )) Ergezer et al. [28] 

IBBO Hi(SIV)  Hj(SIV)+ β (H i1 (SI) −H i2 (SIV )) Feng [33] 

POLBBO Hi(SIV ) Hj (SIV ) + ϕ(Hj (SIV )− Hl(SIV )) Xiong et al. [34] 
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Sinusoidal 𝑥𝑛+1 = 𝛼𝑥𝑛
2 sin⁡(𝜋𝑥𝑛) (0,1) 𝛼 = 2.3 

Logistic 𝑥𝑛+1 = 𝛼𝑥𝑛(1 − 𝑥𝑛) (0,1) 𝛼 = 4 

Chebyshev 𝑥𝑛+1 = 𝐶𝑜𝑠 𝑛𝐶𝑜𝑠−1(𝑥𝑛 ) (-1,1) -- 

 

IV. PROPOSED WORK 
From section 3 it is evident that researchers contributed various migration and mutation models of 

BBO with significant results in performance. However, they have their own merits and demerits. To avoid some 

of the pitfalls of the existing BBO, the proposed LGBBO [5] outperformed other variants of BBO. In this paper, 

we adapt a novel non-linear migration model such as sinusoidal migration model in Eq. (3) and Cauchy 

mutation operator using Eq. (6) to improve the performance of population diversity and enhance exploration 

ability of the individuals. That means, our main objective is to adapt novel approaches that can provide nearly 

best result as compared to the previously developed models. The idea is strongly inspire from the learning 

mechanisms of school children, which is centered on the learning mechanism of a weaker class student. In 

nature, it is very often noticed that a weaker student is directly influenced by a student who is better in local 

context rather than global context.  

The recent advances in theories and applications of nonlinear dynamics, especially chaotic maps, have 

drawn more attention in many fields of optimization to replace certain algorithm-dependent parameters [27, 28]. 

From the literature, there are various chaotic based meta-heuristic EAs are introduced in section 3.1 to tune up 

the parameters. Such a combination of chaos with meta-heuristics has shown some guarantee once the right sets 

of chaotic maps are used. Empirical studies indicate that chaos can have high-level of mixing capability. In 

general, for any variants of BBO, the investigate relies fully on randomness, so at times it may not escape some 

local optima, thus it cannot find the best global solution. Our proposed LGBBO inherit the features from a 

nearest neighbour of the local best individual to be migrated to the globally best individual of the pool. 

Therefore, the main objective of this paper is to propose chaos maps into the LGBBO algorithm and as result, 

improve the diversity of the population. As different chaotic maps may lead to different behavior of the 

algorithm, then there will be a set of chaos-based LGBBO algorithm to use chaos maps instead of random 

values to provide chaotic behaviours. We have take three chaotic maps with their parameters such as Sinusoidal, 

Chebyshev, and Logistic for our simulation purpose which are defined in Table 2.  

Thus main procedure of proposed CLGBBO is explained in following algorithms 2. In this work the 

random value is substituted by chaotic maps as C (n) for the value of nth iteration. In this process, features of 

good solutions (high HSI) appear in poor solutions (Low HSI) as new features for updating the migration and 

mutation to obtain the best feasible individuals. In order to simulate the proposed algorithms set of benchmarks 

functions are utilized are available in Table 3. The simulation results reveal the improvements of the new 

algorithms, due to the application of deterministic chaotic signals instead of constant values. Thereby, the 

chaotic LGBBO mimic the species distribution under local best and global best optimum solution achieves 

much better balance between exploration (global search) and exploitation (local search). Its randomness ensures 

the ability of conducting a large-scales search and help to overcome the drawback of local best solutions. 

Therefore, after each generation, we can conduct the chaotic search in the neighborhood of the current optimal 

parameters by listing a certain number of new generated parameters through chaotic process. In this way, we 

make use of the ergodicity and irregularity of the chaotic variable to help the algorithm to jump out of the local 

optimum as well as finding the optimal parameters. 

 
V. EXPERIMENTAL WORKS 

The focus of this section is to evaluate the efficiency of the nearly developed model. Hence to 

accomplish the objectives this section is divided into three subsections 5.1, 5.2, and 5.3. 
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5.1  TEST FUNCTIONS AND ENVIRONMENTS 

Table 3 present the details of the well-established 10 benchmark functions and their features that are 

used to test the performance of the proposed chaotic based migration and mutation models and the results are 

compared with other developed BBO models. The more details about benchmark functions can be found in [9]. 

5.2 PARAMETER SETUP 

In order to compare the performances of CLGBBO with other variations like BBO, BBBO and 

LGBBO a series of experiments on benchmark functions are carried out to test the efficiency. For initializing the 

CLGBBO, the maximum species count, the maximum migration rates, the maximum mutation rate, and an 

elitism parameter are taken as an user defined parameters. In this algorithm, the pool size is set to be Np=100, 

max_iter=250, Pmut= 0.1. A η value of 0.15, 0.25, 0.35, and 0.5 has been tested for the LGBBO and CLGBBO. 

For the algorithm CLGBBO a fraction of 0.1, 0.15, and 0.2 habitats (i.e., 100 * 0.1 = 10 habitats) has been 

chosen as the neighbours. 

 
Algorithm 2: Proposed CLGBBO  

Setting the parameters E= I=1, mmax=1, Np and Max_iter, radius r 

Create a random set of habitats (populations) H1, H2, …., HNp and Compute HSI (fitness) value for each habitat 

While the halting criteria is not satisfied Do 

    Compute λi, µi, pmut and mi for each habitat using sinusoidal migration model 

    Generate a rand ϵ (0, 1)  

    For each habitat from best to worst according to their HSI values 

           Select a habitat Hi(SIV) probabilistically α λi  

           If C(n) < λi and Hi(SIV) selected, then 

              Compute NN(Hi(SIV))  H(i<=r?1:i-r)(SIV) 

              Select an Hk(SIV) is locally best to Hi(SIV) using NN(Hi(SIV)) 

              Select an habitat Hj(SIV) probabilistically α µj 

                  If C(n) < µj and Hj(SIV) selected, then  

                      Generate a constant η ϵ [0, 1]  

                      For each SIVs (solution features) 

                           Hi(SIV)  (1-η)NN(Hi(SIV)) + ηHj(SIV) 

                      end  

                  end 

            end 

     end 
      Select an Hi(SIV) based on mutation probability proportional pi 

      Compute f(Hi(SIV);0,1) 

      If C(n) < mi then 

          Hi(SIV)  Hi(SIV) + f(Hi(SIV);0,1)   

      end 
      Compute HSI value 

 end 

 

Table 3.Table Benchmark Functions and their features [10] 

Function 

Name 

Range and 

Domain  

 Optimum 

solution   Features  

 

Ackley [-32, 32]
30

 0  M, NS, R, C, D  M:Multimodal 

DeJung [-65.5, 65.5]
30

 0  M, NS, R, C, D  NS:Non-separable 

Griewank [-600, 600]
30

 0  M, NS, R, C, D  R:Regular 

Levy [-100, 100]
30

 0  U, NS, R, C, D  C:Continuous 

Powell [-4, 5]
30

 0  U, NS, R, C, D  D:Differentiable 

Rastrigin [-5.12, 5.12]
30

 0  M, S, R, C, D  ND:Nondifferentiable 
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Rosenbrock [-30, 30]
30

 0  U, NS, R, C, D  DC:Discontinuous 

Schaffer 2 [-100, 100]
30

 0  U, S, IR, DC, ND  IR:Irregular 

Schwefel [-100, 100]
30

 0  M, S, IR, C, D  S:Separable 

Sphere [-100, 100]
30

 0  U, S, R, C, D  U:Unimodal 

 

The simulation has been done in an Octa Core i7 x64 CPU with 8GB 1600FSB RAM. We use R on 

LINUX platform for the analysis of CLGBBO. 

 

5.3 RESULTS AND ANALYSIS 

In this section, table 4 presents the simulation result obtain from the experiment using nndist = 0.1 and 

η = 0.25 for the 10 benchmarked over 50 independent runs. The table shows average best cost obtained by 

LGBBO, and Chaotic-LGBBO using chaos maps such as Chebyshev, Logistic and Sinusoidal respectively for 

each benchmarked. 

Table 4: Average best cost obtained by different Chaotic LGBBO over 50 independent experiments enhance the 

migration and mutation operator 

 

 

 

 

 

 

 

 

 

 

 
Our experiment confirm all chaotic maps are not suitable for all benchmarked. However, Chaotic 

LGBBO with Sinusoidal map performs better in most of the cases. Bold faced values are the best cost results. 

Here Chaotic LGBBO using Chebyshev map produce weak performance as compared to other method. That 

means there is a less immigration probability when we choose Chebyshev map. So this map provides weakened 

exploration ability which results in poor convergence. In a similar way, Logistic maps provide better solution 

only one function as Rosenbrock. The results of mean best provide better local optima compared to LGBBO and 

Chaotic LGBBO using Sinusoidal map. Obtained result shows Chaotic LGBBO performs better in all chaotic 

maps over different benchmarked. We also observed that mean best cost for above three Chaotic maps for the 

De Jung benchmarked produced same result. 

The simulation result obtained by BBO, BBBO (α = 0.25), LGBBO ( nndist = 0.1, η = 0.25) and 

CLGBBO using Sinusoidal for the 10 benchmark functions over 50 independent runs have shown in table 5. 

The table shows the comparative result of best (min), mean, and standard deviation values over the iterations. 

As per the comparative study the result indicates that the CLGBBO algorithm achieves significantly better than 

other variants of BBO algorithms. The experimental results illustrate that proposed algorithm has superior 

searching ability to other models both on convergence speed and accuracy. 

 

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
    In this paper we update the performance of proposed CLGBBO algorithm using a modified chaotic migration 

and mutation operator with the help of sinusoidal model and Cauchy distribution function. Using 10 benchmark 

test functions including uni-modal and multimodal functions, we provide a comparative study of CLGBBO with 

variation of BBOs. The simulation study from the numerical experiment show that proposed algorithm achieves 

Functions LGBBO Chebyshev Logistic Sinusoidal 

   f01=  Ackley  5.30E-02 6.29 2.76E-02 3.05E-03 

   f02=   DeJung  6.84 6.84 6.84 6.84 

   f03=  Griewank  4.72E-01 5.13E-01 5.68E-02 2.31E-5 

   f04=  Levy  5.66 3.42 2.10E-04 3.53E-05 

   f05=   Powell  2.76E+03 1.07E+03 3.90E-02 2.50E-03 

   f06=    Rastrigin  1.24E+02 1.11EE+02 3.88E-02 1.16E-02 

   f07=  Rosenbrock  2.97E+04 1.12E+04 1.03E+01 4.16 

  f08=    Schaffer 2  2.77E-10 2.60E-10 2.31E-04 0 

  f09=    Schwefel  2.91E+03 3.52E+03 2.93E+03 3.92E+03 

  f10=  Sphare  3.20E+01 3.23E+01 2.22E-04 1.16E-05 
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an excellent performance compared with other variants of BBO to maintain exploration and exploitation ability 

of the algorithm. Our future research direction includes: i) statistical performance evaluation and ii) convergence 

analysis to take more and more benchmark functions and chaotic maps. 

Table 5: Simulation for BBO (alpha=0, nndist=0), BBBO (alpha=0, nndist=0.25), LGBBO (η=0.1, nndist=0.25) 

and CLGBBO (η=0.1, nndist=0.25) on 10 bench mark functions of 30-D problems over 50 independent run.  
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