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ABSTRACT: In modern era of atomic force microscope, it can be used in micro sensing applications in 

aerospace and fluid-flow engineering. The micro-sensor in such applications encounters various types of fluid 

media. The study of conventional micro-cantilevers is not applicable in liquids. The behavior of the AFM 

cantilever in liquid media has been studied by many researchers during the past five years. Hydrodynamic 

forces in the system are often modeled as nonlinear functions of the tip displacement. On the other hand micro-

cantilevers sensors can also be used for measurement of micro scale viscosity, density, and temperature in 

avionic applications by analyzing frequency response of the cantilever. In this paper, a micro-cantilever with its 

tip operating in tapping mode is considered with liquid environment and modeled using a continuous system 

dynamics. The hydrodynamic forces and additional mass from the liquid are accounted in the equation of 

motion. Also the first mode dynamics is considered for solving equations of motion using Galerkin’s method. It 

is also shown a methodology to measure fluid density and viscosity using microcantilever probes. 
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I. INTRODUCTION 
The study of flexural vibrations of beams and plates submerged in a viscous fluid is drawing an 

increased attention in many research fields such as atomic force microscopy, micromechanical oscillators for 

sensing and actuations, micro scale energy harvesters and biomimetic propulsions. In all these applications the 

estimation of forces exerted by the fluid on the structure is of primary importance. Such forces include 

distributed lift and thrust produced by momentum transferred to the fluid. These forces are related to complex 

flow field generated by solid body motion which is influenced by inertial and viscous phenomenon. A first 

estimate of distributed lift of thin beam with rectangular cross section is given by Sader [1]. In this work, length 

to width ratio was selected very large and is subjected to low frequency excitation, so that beam is locally 

considered as infinitely long cylinder and fluid loading is analyzed using numerical findings based on unsteady 

Stokes flow. Brenetto et al. [2] explored the possibilities of extracting energy from mechanical vibration using 

ionic polymer metal composites in which the hydrodynamic function-expressions were proposed over some 

range of Renault‟s numbers. Aureli et al. [3] proposed an extension to take in to account finite amplitude 

oscillations for a two dimentional numerical simulations of flow physics induced by rigid lamina oscillating in 

viscous fluid. It is demonstrated in other papers [4] that as the amplitude increases, the relevant nonlinear 

hydrodynamic damping would always exists.  

In the present work, we consider the flow induced by vibration of cantilever beam submerged in 

viscous fluid to determine the influence of parameters, such as frequency and amplitude of oscillation, aspect 

ratio on the forces exerted by fluid on the structure. An in-plane flexural vibration of the beam modeled using 

classical linear beam theory and is assumed to be vibrating along its fundamental mode shape. The fluid is 

assumed to be Newtonian and flow is incompressible. 

 

II. PROBLEM STATEMENT 
2.1 Beam vibration in liquids 

 We considered flexural vibration of cantilever beam under harmonic base excitation. Let x be the co-

ordinate along beam axis with y and z are the co-ordinates along width and thickness. Beam is slender and 

composed of homogeneous and isotropic material. The classical linear Euler-Bernoulli beam theory gives the 

equation of motion as: 
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where, 
12

3Ebh
K  ,  

b and h are width and thickness,   Mass density of cantilever, 

),( txw  Beam deflection,  )sin()( 0 tFtF   Harmonic base excitation, 

S(x,t)=-B
 
t

txw



 ,
is the damping force, L  Length of beam, Fhyd(x,t) describes hydrodynamic action exerted 

on the beam by the encompassing fluid. The effect of liquid viscosity can be taken care by a simple model. 

Researchers have approximated the hydrodynamic forces to be in proportion to the cantilever acceleration and 

velocity as: 
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1 2 . Here,  is vibrating frequency of the cantilever,  is kinematic 

viscosity of liquid, liq is density of the liquid.   

2.2 Solution methodology 

 In order to solve the dynamic equations in continuous form, the Galerkin‟s approximation method is 

employed. Here we considered w(x,t)= 


M

i
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normalized modal function. As first mode dominates, often w(x,t) is approximated as 1(x)q1(t) . Here, 1=1(x) 

is obtained from the boundary conditions of the beam. The mode shape function 1(x) is multiplied on both 

sides of the differential eq.(1) and the resultant equation is integrated along the cantilever length. i.e.  
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III. NUMERICAL EXAMPLE 
In order to illustrate the methodology, a microcantilever beam with nano-tip used in AFM sensing [5] 

subjected to harmonic base excitation is considered as shown in Fig.1. Several earlier works demonstrated the 

operation of such beams in liquid media. Song and Bhushan [6] used finite element model to know frequency 

and transient response analysis of cantilevers in tapping mode operating in air as well as liquid. Korayem et al. 

[7] showed that the frequency response behavior of micro cantilever in liquid is completely different from that 

in air and studied the influence of mechanical properties of the liquid like viscosity and density on frequency 

response analysis. Vancura et al.[8] analyzed characteristics of resonant cantilever in viscous liquids using 

rectangular cantilevers geometries in pure water, glycerol and ethanol solution with different concentration. His 

study results can be used in resonant cantilevers as biochemical sensors in liquid environments.  

 
Fig.1 Micro-cantilever beam under consideration 
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In addition to the hydrodynamic and harmonic forces, the system is subjected to an atomic interaction force 

fID(t) in microscopic level. The general mode shape function is obtained from the following boundary 

conditions:  

At x = 0, w(0,t) = 0, and 0
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Here, fID(t)=-ktsw(L,t) is linearized tip-sample interaction force, with contact stiffness 
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where, H is Hamaker constant, z0 is equilibrium distance between cantilever and sample, R is equivalent tip-

radius, E
*
=[(1-t

2
)/Et+(1-s

2
)/Es]

-1
 is effective elastic modulus, a0 is interatomic distance and me is equivalent tip 

mass added. The frequency equation and eigenfunction can be obtained from above four boundary conditions as 

follows [9] 
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The computations are performed with a MATLAB symbolic logic program, which can resolve the equations 

into ordinary differential form in terms of q1.  

 

IV. RESULT AND DISCUSSION 
Table 1 shows the data considered for analysis. 

Table 1. Parameters of simulation for the AFM cantilever [6] 

Cantilever length (L) 200 µm 

Cantilever width (b) 140 µm 

Cantilever thickness (t) 7.7 µm 

Cantilever mass density () 2730 Kg/m
3
 

Cantilever Young’s Modulus (E) 130 GPa 

Quality factor in air (Q) 900 

Liquid density(liq) 1030 Kg/m
3
 

Liquid viscosity() 13.2×10
-4 

Kg/m
3
 

Cantilever angle() 15° 

Number of elements(n) 20 

Tip length(l) 10 µm 

Tip radiud(R) 10 nm 

Hamarker constant (H) 2.96×10
-19

 J 

Intermolecular distance (a0) 0.38 nm 

Effective elastic modulus (E
*
) 10.2 GPa 

Effective elastic modulus (G
*
) 4.2 GPa 

 

The effect of equivalent linear interaction stiffness k/kk̂ tsts  , where k=Aln
2 

on natural frequencies is as 

shown in Fig. 2.  
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Fig.2 Graph of Normalised equivalent stiffness vs. natural frequency 

 

Here the dotted line indicates the natural frequency of normal cantilever in air without tip mass. It is 

seen that even if interaction stiffness is zero, the natural frequency mismatch with dashed line is due to the tip-

mass boundary condition. Using the modal function available after solving frequency equation, the partial 

differential is reduced into second order differential equation in terms of variable q1 as per Eq.(3). This is solved 

with Runge-Kutta‟s fourth order method, to study the effect equivalent stiffness on time response. The viscous 

damping ratio considered in present work is 0.001. Fig.3 shows the time history and phase diagram for the 

system with tsk̂ =0.1. 
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Fig.3 Variation of the displacement(µm) of system with respect to time (s) 

 

Fig.4 shows the graph of the displacement of the cantilever vs. velocity of the cantilever for the system. 
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Fig.4 Graph of displacement vs. velocity of the cantilever. 
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IV. CONCLUSIONS 
In this paper cantilever beam dynamics using first mode mechanics in liquids was considered. The 

effect of hydrodynamic force exerted by encompassing fluid was studied. Galerkin‟s approximation method was 

used to get the normalized modal function. Runge-Kutta solver is used to solve this second order ordinary 

differential equation in time variable. The effect of normalized equivalent interaction stiffness on natural 

frequency is studied. Further work is going on. It can be concluded that there is a tremendous effect of 

hydrodynamic forces on the modal characteristics of cantilevers. 

 

APPENDIX 
Modal function is approximated  in terms of frequency parameter  as:  
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Eliminating  C1 and C2 frin eqs.(A1) and (A2), we get the frequency equation (7): 
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